w2v-bert-bem-genbed-f-model

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the GENBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2525
  • Wer: 0.4159

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4652 1.0959 200 0.4014 0.6859
0.3232 2.1918 400 0.4205 0.6648
0.2583 3.2877 600 0.2882 0.5244
0.2005 4.3836 800 0.2846 0.4935
0.1707 5.4795 1000 0.3055 0.5254
0.1448 6.5753 1200 0.2750 0.4459
0.1147 7.6712 1400 0.2650 0.4418
0.1086 8.7671 1600 0.2656 0.4789
0.0872 9.8630 1800 0.2525 0.4159
0.0631 10.9589 2000 0.3105 0.4286
0.0609 12.0548 2200 0.2801 0.4273
0.043 13.1507 2400 0.3265 0.4177

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
5
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for csikasote/w2v-bert-bem-genbed-f-model

Finetuned
(251)
this model