csikasote's picture
End of training
b7ef927 verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - bigcgen
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-bigcgen-female-30hrs-model
    results: []

mms-1b-bigcgen-female-30hrs-model

This model is a fine-tuned version of facebook/mms-1b-all on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.5369

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
14.2597 0.0501 100 inf 1.0025
6.2197 0.1002 200 inf 0.9946
5.2752 0.1503 300 inf 1.0316
2.3626 0.2004 400 inf 0.5998
1.7448 0.2504 500 inf 0.5814
1.6955 0.3005 600 inf 0.5709
1.6841 0.3506 700 inf 0.5596
1.693 0.4007 800 inf 0.5639
1.688 0.4508 900 inf 0.5555
1.5718 0.5009 1000 inf 0.5476
1.5855 0.5510 1100 inf 0.5482
1.4783 0.6011 1200 inf 0.5471
1.5198 0.6511 1300 inf 0.5476
1.4941 0.7012 1400 inf 0.5469
1.5916 0.7513 1500 inf 0.5426
1.4683 0.8014 1600 inf 0.5460
1.486 0.8515 1700 inf 0.5528
1.4353 0.9016 1800 inf 0.5435
1.6166 0.9517 1900 inf 0.5541
1.531 1.0015 2000 inf 0.5535
1.5441 1.0516 2100 inf 0.5478
1.3459 1.1017 2200 inf 0.5274
1.357 1.1518 2300 inf 0.5269
1.4464 1.2019 2400 inf 0.5226
1.4326 1.2519 2500 inf 0.5369

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0