csikasote's picture
End of training
26ca7cf verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - bemgen
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-bemgen-balanced-model
    results: []

mms-1b-bemgen-balanced-model

This model is a fine-tuned version of facebook/mms-1b-all on the BEMGEN - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2753
  • Wer: 0.4201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.8327 0.1031 100 0.8480 0.7889
0.5906 0.2062 200 0.3704 0.5819
0.4809 0.3093 300 0.3327 0.5039
0.4495 0.4124 400 0.3172 0.4894
0.4266 0.5155 500 0.3102 0.4632
0.4167 0.6186 600 0.3075 0.4716
0.4151 0.7216 700 0.2996 0.4829
0.3955 0.8247 800 0.2985 0.4712
0.3802 0.9278 900 0.2960 0.4926
0.392 1.0309 1000 0.2839 0.4374
0.375 1.1340 1100 0.2837 0.4318
0.3885 1.2371 1200 0.2812 0.4257
0.3824 1.3402 1300 0.2825 0.4255
0.3906 1.4433 1400 0.2794 0.4290
0.3465 1.5464 1500 0.2807 0.4283
0.3564 1.6495 1600 0.2773 0.4238
0.3617 1.7526 1700 0.2750 0.4452
0.3808 1.8557 1800 0.2783 0.4229
0.3661 1.9588 1900 0.2761 0.4517
0.3952 2.0619 2000 0.2753 0.4201

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0