bert-finetuned-ner4

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0599
  • Precision: 0.9265
  • Recall: 0.9480
  • F1: 0.9371
  • Accuracy: 0.9859

Usage

from transformers import pipeline
import json

model_checkpoint = "./bert-finetuned-ner4"
token_classifier = pipeline(
    "token-classification", model=model_checkpoint, aggregation_strategy="simple"
)

with open('./assets/test2.json', 'r') as json_file:
    data = json.load(json_file)

for item in data:
    print(item)
    print(token_classifier(item)) 

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0765 1.0 1756 0.0752 0.9082 0.9344 0.9211 0.9795
0.0432 2.0 3512 0.0577 0.9257 0.9480 0.9367 0.9859
0.0243 3.0 5268 0.0599 0.9265 0.9480 0.9371 0.9859

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
101
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for csariyildiz/bert-finetuned-ner

Finetuned
(2183)
this model

Dataset used to train csariyildiz/bert-finetuned-ner

Evaluation results