cruiser's picture
Training in progress epoch 9
5eb8326
|
raw
history blame
2.45 kB
metadata
tags:
  - generated_from_keras_callback
model-index:
  - name: cruiser/twitter_roberta_final_model
    results: []

cruiser/twitter_roberta_final_model

This model is a fine-tuned version of cardiffnlp/twitter-xlm-roberta-base-sentiment on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0648
  • Validation Loss: 1.0107
  • Train Accuracy: 0.7943
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 1e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 34090, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 250, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.5482 0.4911 0.7991 0
0.4389 0.5053 0.7972 1
0.3567 0.5357 0.7935 2
0.2774 0.6193 0.7872 3
0.2080 0.6732 0.7989 4
0.1545 0.7639 0.7889 5
0.1162 0.8836 0.7855 6
0.0943 0.9301 0.7903 7
0.0768 0.9647 0.7929 8
0.0648 1.0107 0.7943 9

Framework versions

  • Transformers 4.27.4
  • TensorFlow 2.11.0
  • Datasets 2.1.0
  • Tokenizers 0.13.2