manu commited on
Commit
9a8683a
1 Parent(s): 161527f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +41 -14
README.md CHANGED
@@ -1,40 +1,67 @@
 
1
  ---
2
  license: mit
3
  datasets:
4
  - cerebras/SlimPajama-627B
5
- - oscar-corpus/OSCAR-2301
 
6
  - bigcode/starcoderdata
7
  language:
8
  - fr
9
  - en
10
- pipeline_tag: text-generation
11
  tags:
12
  - legal
13
- - art
14
  - code
15
- - finance
16
- - medical
17
  - text-generation-inference
 
18
  ---
19
 
20
- # CroissantLLM: A not so flaky bilingual 1.3B model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- An experimental mode trained on a small subsplit of the final data.
 
 
 
 
 
 
 
 
23
 
24
- ### Usage
25
 
26
  ```python
27
- model_name = "croissantllm/base_50k"
28
 
29
- model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
 
 
 
 
30
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
31
 
32
- inputs = tokenizer("His name is Bob. -> Il s'appelle Bob.\nHe is heading to the market. -> Il va au marché.\nWe are heading to the beach, let's go together. ->", return_tensors="pt").to(model.device)
 
 
33
  tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60, temperature=0.5)
34
  print(tokenizer.decode(tokens[0]))
35
 
36
  # remove bos token
37
- inputs = tokenizer("France -> Paris, Italie -> Rome, Allemagne -> Berlin, Espagne ->", return_tensors="pt", add_special_tokens=False).to(model.device)
38
- tokens = model.generate(**inputs, max_length=250, do_sample=True, top_p=0.95, top_k=60)
39
  print(tokenizer.decode(tokens[0]))
40
- ```
 
1
+
2
  ---
3
  license: mit
4
  datasets:
5
  - cerebras/SlimPajama-627B
6
+ - uonlp/CulturaX
7
+ - pg19
8
  - bigcode/starcoderdata
9
  language:
10
  - fr
11
  - en
12
+ pipeline_tag: text2text-generation
13
  tags:
14
  - legal
 
15
  - code
 
 
16
  - text-generation-inference
17
+ - art
18
  ---
19
 
20
+ # CroissantLLM - Base (50k steps)
21
+
22
+ This model is part of the CroissantLLM initiative, and corresponds to the checkpoint after 50k steps (0.79 T) tokens.
23
+
24
+ To play with the final model, we recommend using the Chat version: https://huggingface.co/croissantllm/CroissantLLMChat-v0.1.
25
+
26
+
27
+
28
+ ## Abstract
29
+ We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware.
30
+ To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources.
31
+ To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81% of the transparency criteria, far beyond the scores of even most open initiatives.
32
+ This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models.
33
+
34
+ ## Citation
35
 
36
+ Our work can be cited as:
37
+
38
+ ```bash
39
+ Coming soon
40
+ ```
41
+
42
+ ## Usage
43
+
44
+ This model is a base model, that is, it is not finetuned for Chat function and works best with few-shot prompting strategies.
45
 
 
46
 
47
  ```python
 
48
 
49
+ import torch
50
+ from transformers import AutoModelForCausalLM, AutoTokenizer
51
+
52
+
53
+ model_name = "croissantllm/base_50k"
54
  tokenizer = AutoTokenizer.from_pretrained(model_name)
55
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
56
 
57
+ inputs = tokenizer("I am so tired I could sleep right now. -> Je suis si fatigué que je pourrais m'endormir maintenant.
58
+ He is heading to the market. -> Il va au marché.
59
+ We are running on the beach. ->", return_tensors="pt").to(model.device)
60
  tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60, temperature=0.5)
61
  print(tokenizer.decode(tokens[0]))
62
 
63
  # remove bos token
64
+ inputs = tokenizer("Capitales: France -> Paris, Italie -> Rome, Allemagne -> Berlin, Espagne ->", return_tensors="pt", add_special_tokens=True).to(model.device)
65
+ tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60)
66
  print(tokenizer.decode(tokens[0]))
67
+ ```