Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- cerebras/SlimPajama-627B
|
5 |
+
- oscar-corpus/OSCAR-2301
|
6 |
+
- bigcode/starcoderdata
|
7 |
+
language:
|
8 |
+
- fr
|
9 |
+
- en
|
10 |
+
pipeline_tag: text-generation
|
11 |
+
tags:
|
12 |
+
- legal
|
13 |
+
- art
|
14 |
+
- code
|
15 |
+
- finance
|
16 |
+
- medical
|
17 |
+
- text-generation-inference
|
18 |
+
---
|
19 |
+
|
20 |
+
# CroissantLLM: A not so flaky bilingual 1.3B model
|
21 |
+
|
22 |
+
An experimental mode trained on a small subsplit of the final data.
|
23 |
+
|
24 |
+
### Usage
|
25 |
+
|
26 |
+
```python
|
27 |
+
model_name = "croissantllm/base_50k"
|
28 |
+
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
31 |
+
|
32 |
+
inputs = tokenizer("His name is Bob. -> Il s'appelle Bob.\nHe is heading to the market. -> Il va au marché.\nWe are heading to the beach, let's go together. ->", return_tensors="pt").to(model.device)
|
33 |
+
tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60, temperature=0.5)
|
34 |
+
print(tokenizer.decode(tokens[0]))
|
35 |
+
|
36 |
+
# remove bos token
|
37 |
+
inputs = tokenizer("France -> Paris, Italie -> Rome, Allemagne -> Berlin, Espagne ->", return_tensors="pt", add_special_tokens=False).to(model.device)
|
38 |
+
tokens = model.generate(**inputs, max_length=250, do_sample=True, top_p=0.95, top_k=60)
|
39 |
+
print(tokenizer.decode(tokens[0]))
|
40 |
+
```
|