TenaliAI-FinTech-v1 / README.md
credentek's picture
End of training
d7e40ce verified
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: TenaliAI-FinTech-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TenaliAI-FinTech-v1
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.3436 | 1.0 | 3809 | 1.9815 |
| 1.2453 | 2.0 | 7618 | 1.1621 |
| 0.9853 | 3.0 | 11427 | 0.9375 |
| 0.8483 | 4.0 | 15236 | 0.9018 |
| 0.8195 | 5.0 | 19045 | 0.8538 |
| 0.7579 | 6.0 | 22854 | 0.8540 |
| 0.7123 | 7.0 | 26663 | 0.8397 |
| 0.7064 | 8.0 | 30472 | 0.8405 |
| 0.6987 | 9.0 | 34281 | 0.8315 |
| 0.676 | 10.0 | 38090 | 0.8530 |
| 0.6566 | 11.0 | 41899 | 0.8504 |
| 0.6411 | 12.0 | 45708 | 0.8501 |
| 0.6432 | 13.0 | 49517 | 0.8545 |
| 0.6483 | 14.0 | 53326 | 0.8624 |
| 0.6447 | 15.0 | 57135 | 0.8635 |
| 0.6077 | 16.0 | 60944 | 0.8782 |
| 0.6208 | 17.0 | 64753 | 0.8925 |
| 0.624 | 18.0 | 68562 | 0.8834 |
| 0.6298 | 19.0 | 72371 | 0.9000 |
| 0.6488 | 20.0 | 76180 | 0.8922 |
| 0.6019 | 21.0 | 79989 | 0.9025 |
| 0.6412 | 22.0 | 83798 | 0.8963 |
| 0.6078 | 23.0 | 87607 | 0.9045 |
| 0.6163 | 24.0 | 91416 | 0.8898 |
| 0.6275 | 25.0 | 95225 | 0.9036 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1