File size: 2,569 Bytes
124430e cca4c10 eae9ad4 124430e 2e43dfd b1fc962 124430e eae9ad4 124430e d7e40ce 124430e 9f4d566 124430e d92e70e 124430e 9f4d566 124430e d92e70e 124430e b1fc962 d92e70e 6441086 d92e70e baba3b3 d92e70e 9f4d566 d92e70e 05058ec d7e40ce d92e70e baba3b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: TenaliAI-FinTech-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TenaliAI-FinTech-v1
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.3436 | 1.0 | 3809 | 1.9815 |
| 1.2453 | 2.0 | 7618 | 1.1621 |
| 0.9853 | 3.0 | 11427 | 0.9375 |
| 0.8483 | 4.0 | 15236 | 0.9018 |
| 0.8195 | 5.0 | 19045 | 0.8538 |
| 0.7579 | 6.0 | 22854 | 0.8540 |
| 0.7123 | 7.0 | 26663 | 0.8397 |
| 0.7064 | 8.0 | 30472 | 0.8405 |
| 0.6987 | 9.0 | 34281 | 0.8315 |
| 0.676 | 10.0 | 38090 | 0.8530 |
| 0.6566 | 11.0 | 41899 | 0.8504 |
| 0.6411 | 12.0 | 45708 | 0.8501 |
| 0.6432 | 13.0 | 49517 | 0.8545 |
| 0.6483 | 14.0 | 53326 | 0.8624 |
| 0.6447 | 15.0 | 57135 | 0.8635 |
| 0.6077 | 16.0 | 60944 | 0.8782 |
| 0.6208 | 17.0 | 64753 | 0.8925 |
| 0.624 | 18.0 | 68562 | 0.8834 |
| 0.6298 | 19.0 | 72371 | 0.9000 |
| 0.6488 | 20.0 | 76180 | 0.8922 |
| 0.6019 | 21.0 | 79989 | 0.9025 |
| 0.6412 | 22.0 | 83798 | 0.8963 |
| 0.6078 | 23.0 | 87607 | 0.9045 |
| 0.6163 | 24.0 | 91416 | 0.8898 |
| 0.6275 | 25.0 | 95225 | 0.9036 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|