See axolotl config
axolotl version: 0.6.0
base_model: NousResearch/Llama-3.2-1B
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: createPLL/gemma2bpll
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
outputs/qlora-out
This model is a fine-tuned version of NousResearch/Llama-3.2-1B on the createPLL/gemma2bpll dataset. It achieves the following results on the evaluation set:
- Loss: 0.9679
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.77 | 0.0042 | 1 | 1.9898 |
0.8841 | 0.2524 | 60 | 1.0753 |
0.7772 | 0.5047 | 120 | 0.9961 |
0.7169 | 0.7571 | 180 | 0.9679 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 25
Model tree for createPLL/Axolotl-LLama
Base model
NousResearch/Llama-3.2-1B