metadata
library_name: transformers
language:
- qve
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- cportoca/Quechua_Spanish_dataset
metrics:
- wer
model-index:
- name: Whisper Small BPE - cportoca
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Quechua_Spanish_dataset
type: cportoca/Quechua_Spanish_dataset
args: 'config: Qve, split: train/test'
metrics:
- name: Wer
type: wer
value: 101.49527806925498
Whisper Small BPE - cportoca
This model is a fine-tuned version of openai/whisper-small on the Quechua_Spanish_dataset dataset. It achieves the following results on the evaluation set:
- Loss: 2.3697
- Wer: 101.4953
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.6981 | 0.0605 | 50 | 2.3697 | 101.4953 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3