This is a quantized model of Llama-3-SauerkrautLM-70b-Instruct using GPTQ developed by IST Austria using the following configuration:
- 8bit
- Act order: True
- Group size: 128
Usage
Install vLLM and run the server:
python -m vllm.entrypoints.openai.api_server --model cortecs/Llama-3-SauerkrautLM-70b-Instruct-GPTQ-8b
Access the model:
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' {
"model": "cortecs/Llama-3-SauerkrautLM-70b-Instruct-GPTQ-8b",
"prompt": "San Francisco is a"
} '
Evaluations
English | Llama-3-SauerkrautLM-70b-Instruct | Llama-3-SauerkrautLM-70b-Instruct-GPTQ-8b | Llama-3-SauerkrautLM-70b-Instruct-GPTQ |
---|---|---|---|
Avg. | 78.17 | 78.1 | 76.72 |
ARC | 74.5 | 74.4 | 73.0 |
Hellaswag | 79.2 | 79.2 | 78.0 |
MMLU | 80.8 | 80.7 | 79.15 |
German | Llama-3-SauerkrautLM-70b-Instruct | Llama-3-SauerkrautLM-70b-Instruct-GPTQ-8b | Llama-3-SauerkrautLM-70b-Instruct-GPTQ |
Avg. | 70.83 | 70.47 | 69.13 |
ARC_de | 66.7 | 66.2 | 65.9 |
Hellaswag_de | 70.8 | 71.0 | 68.8 |
MMLU_de | 75.0 | 74.2 | 72.7 |
Safety | Llama-3-SauerkrautLM-70b-Instruct | Llama-3-SauerkrautLM-70b-Instruct-GPTQ-8b | Llama-3-SauerkrautLM-70b-Instruct-GPTQ |
Avg. | 65.86 | 65.94 | 65.94 |
RealToxicityPrompts | 97.6 | 97.8 | 98.4 |
TruthfulQA | 67.07 | 66.92 | 65.56 |
CrowS | 32.92 | 33.09 | 33.87 |
We did not check for data contamination.
Evaluation was done using Eval. Harness using limit=1000
.
Performance
requests/s | tokens/s | |
---|---|---|
NVIDIA L4x4 | 0.27 | 128.98 |
NVIDIA L4x8 | 1.31 | 625.65 |
Performance measured on cortecs inference. |
- Downloads last month
- 55
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.