vit-base-patch16-224

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3122
  • F1 Macro: 0.5397
  • F1 Micro: 0.6212
  • F1 Weighted: 0.6077
  • Precision Macro: 0.5343
  • Precision Micro: 0.6212
  • Precision Weighted: 0.6084
  • Recall Macro: 0.5571
  • Recall Micro: 0.6212
  • Recall Weighted: 0.6212
  • Accuracy: 0.6212

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.9037 1.0 29 1.8618 0.1250 0.2197 0.1592 0.1401 0.2197 0.1692 0.1674 0.2197 0.2197 0.2197
1.6981 2.0 58 1.8760 0.1537 0.2424 0.1896 0.2152 0.2424 0.2787 0.2068 0.2424 0.2424 0.2424
1.7426 3.0 87 1.6971 0.2272 0.3333 0.2622 0.1959 0.3333 0.2233 0.2846 0.3333 0.3333 0.3333
1.1847 4.0 116 1.5082 0.3360 0.4242 0.3911 0.3925 0.4242 0.4281 0.3553 0.4242 0.4242 0.4242
1.3906 5.0 145 1.4063 0.3152 0.4621 0.3815 0.2727 0.4621 0.3279 0.3785 0.4621 0.4621 0.4621
1.5575 6.0 174 1.3833 0.4414 0.4621 0.4526 0.4850 0.4621 0.4941 0.4402 0.4621 0.4621 0.4621
1.1063 7.0 203 1.2431 0.4750 0.5833 0.5453 0.5898 0.5833 0.6329 0.4890 0.5833 0.5833 0.5833
1.1503 8.0 232 1.3635 0.4036 0.4924 0.4586 0.4145 0.4924 0.4762 0.4436 0.4924 0.4924 0.4924
0.5124 9.0 261 1.1603 0.5463 0.6288 0.6136 0.5488 0.6288 0.6113 0.5551 0.6288 0.6288 0.6288
0.6648 10.0 290 1.4136 0.4184 0.5 0.4713 0.4713 0.5 0.5275 0.4413 0.5 0.5 0.5
0.2917 11.0 319 1.2004 0.5155 0.6061 0.5892 0.5180 0.6061 0.5882 0.5268 0.6061 0.6061 0.6061
0.4962 12.0 348 1.3730 0.4970 0.5682 0.5671 0.5094 0.5682 0.5909 0.5109 0.5682 0.5682 0.5682
0.5723 13.0 377 1.3377 0.5705 0.6136 0.6077 0.7050 0.6136 0.6879 0.5756 0.6136 0.6136 0.6136
0.4589 14.0 406 1.3717 0.5648 0.6136 0.6094 0.6239 0.6136 0.6458 0.5609 0.6136 0.6136 0.6136
0.2544 15.0 435 1.4129 0.5086 0.5985 0.5793 0.5140 0.5985 0.5772 0.5187 0.5985 0.5985 0.5985
0.3179 16.0 464 1.3589 0.5882 0.6439 0.6347 0.6912 0.6439 0.6603 0.5777 0.6439 0.6439 0.6439
0.1304 17.0 493 1.5604 0.5010 0.5758 0.5606 0.5123 0.5758 0.5669 0.5076 0.5758 0.5758 0.5758
0.0887 18.0 522 1.6231 0.5091 0.6061 0.5800 0.5344 0.6061 0.5917 0.5190 0.6061 0.6061 0.6061
0.0254 19.0 551 1.6095 0.5625 0.6136 0.6070 0.6642 0.6136 0.6353 0.5520 0.6136 0.6136 0.6136
0.0908 20.0 580 1.6941 0.5270 0.6136 0.5962 0.5331 0.6136 0.6004 0.5381 0.6136 0.6136 0.6136
0.0913 21.0 609 1.6917 0.5537 0.6136 0.6018 0.5909 0.6136 0.6169 0.5579 0.6136 0.6136 0.6136
0.015 22.0 638 1.8274 0.4866 0.5682 0.5512 0.4855 0.5682 0.5477 0.5003 0.5682 0.5682 0.5682
0.0156 23.0 667 1.7322 0.5772 0.6439 0.6233 0.6870 0.6439 0.6598 0.5802 0.6439 0.6439 0.6439
0.0275 24.0 696 1.6262 0.5293 0.6212 0.6006 0.5274 0.6212 0.5913 0.5422 0.6212 0.6212 0.6212
0.0034 25.0 725 1.7278 0.5680 0.6591 0.6409 0.5674 0.6591 0.6333 0.5786 0.6591 0.6591 0.6591
0.0021 26.0 754 1.7111 0.5542 0.6439 0.6250 0.5506 0.6439 0.6148 0.5657 0.6439 0.6439 0.6439
0.0021 27.0 783 1.7412 0.5556 0.6439 0.6257 0.5507 0.6439 0.6163 0.5684 0.6439 0.6439 0.6439
0.0079 28.0 812 1.8651 0.5506 0.6364 0.6176 0.5427 0.6364 0.6078 0.5670 0.6364 0.6364 0.6364
0.0018 29.0 841 1.8016 0.5508 0.6364 0.6184 0.5425 0.6364 0.6074 0.5654 0.6364 0.6364 0.6364
0.0068 30.0 870 1.7936 0.5510 0.6364 0.6182 0.5436 0.6364 0.6073 0.5650 0.6364 0.6364 0.6364

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
23
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train corranm/vit-base-patch16-224