square_run_square_run_first_vote_full_pic_25
This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8536
- F1 Macro: 0.0897
- F1 Micro: 0.2273
- F1 Weighted: 0.1159
- Precision Macro: 0.1014
- Precision Micro: 0.2273
- Precision Weighted: 0.1202
- Recall Macro: 0.1612
- Recall Micro: 0.2273
- Recall Weighted: 0.2273
- Accuracy: 0.2273
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.0541 | 1.0 | 58 | 1.9294 | 0.0745 | 0.1742 | 0.0883 | 0.0677 | 0.1742 | 0.0775 | 0.1392 | 0.1742 | 0.1742 | 0.1742 |
1.899 | 2.0 | 116 | 2.0056 | 0.0914 | 0.1667 | 0.1071 | 0.1733 | 0.1667 | 0.2233 | 0.1507 | 0.1667 | 0.1667 | 0.1667 |
1.8937 | 3.0 | 174 | 1.8754 | 0.0736 | 0.2197 | 0.0978 | 0.1254 | 0.2197 | 0.1492 | 0.1565 | 0.2197 | 0.2197 | 0.2197 |
1.6804 | 4.0 | 232 | 1.8873 | 0.1517 | 0.2424 | 0.1844 | 0.1762 | 0.2424 | 0.2120 | 0.1913 | 0.2424 | 0.2424 | 0.2424 |
1.9232 | 5.0 | 290 | 1.8961 | 0.1135 | 0.2197 | 0.1375 | 0.1588 | 0.2197 | 0.1867 | 0.1798 | 0.2197 | 0.2197 | 0.2197 |
1.9641 | 6.0 | 348 | 1.8811 | 0.1590 | 0.2576 | 0.1993 | 0.1760 | 0.2576 | 0.2156 | 0.2014 | 0.2576 | 0.2576 | 0.2576 |
2.0347 | 7.0 | 406 | 1.9128 | 0.1464 | 0.25 | 0.1728 | 0.2850 | 0.25 | 0.3156 | 0.2085 | 0.25 | 0.25 | 0.25 |
1.6055 | 8.0 | 464 | 1.8785 | 0.0897 | 0.1894 | 0.1134 | 0.1093 | 0.1894 | 0.1335 | 0.1456 | 0.1894 | 0.1894 | 0.1894 |
1.7139 | 9.0 | 522 | 1.8898 | 0.1370 | 0.2273 | 0.1573 | 0.1198 | 0.2273 | 0.1335 | 0.1915 | 0.2273 | 0.2273 | 0.2273 |
1.6365 | 10.0 | 580 | 2.0175 | 0.1712 | 0.2197 | 0.1920 | 0.2880 | 0.2197 | 0.3202 | 0.2121 | 0.2197 | 0.2197 | 0.2197 |
1.8532 | 11.0 | 638 | 1.9556 | 0.1660 | 0.2273 | 0.1964 | 0.1554 | 0.2273 | 0.1836 | 0.1913 | 0.2273 | 0.2273 | 0.2273 |
1.2227 | 12.0 | 696 | 2.0035 | 0.2204 | 0.2576 | 0.2473 | 0.2152 | 0.2576 | 0.2460 | 0.2339 | 0.2576 | 0.2576 | 0.2576 |
1.6314 | 13.0 | 754 | 2.2851 | 0.1228 | 0.1515 | 0.1330 | 0.1522 | 0.1515 | 0.1744 | 0.1455 | 0.1515 | 0.1515 | 0.1515 |
1.4037 | 14.0 | 812 | 2.4487 | 0.2087 | 0.2045 | 0.2052 | 0.2603 | 0.2045 | 0.2314 | 0.1982 | 0.2045 | 0.2045 | 0.2045 |
1.1671 | 15.0 | 870 | 2.3369 | 0.2516 | 0.2576 | 0.2536 | 0.2666 | 0.2576 | 0.2603 | 0.2534 | 0.2576 | 0.2576 | 0.2576 |
1.2144 | 16.0 | 928 | 2.5458 | 0.2020 | 0.25 | 0.2314 | 0.2126 | 0.25 | 0.2378 | 0.2129 | 0.25 | 0.25 | 0.25 |
0.7161 | 17.0 | 986 | 2.8359 | 0.1935 | 0.2273 | 0.2223 | 0.2512 | 0.2273 | 0.2767 | 0.1989 | 0.2273 | 0.2273 | 0.2273 |
0.7918 | 18.0 | 1044 | 2.9960 | 0.1857 | 0.25 | 0.2207 | 0.2161 | 0.25 | 0.2431 | 0.2032 | 0.25 | 0.25 | 0.25 |
0.3944 | 19.0 | 1102 | 3.1088 | 0.2928 | 0.2955 | 0.2922 | 0.3139 | 0.2955 | 0.3033 | 0.2887 | 0.2955 | 0.2955 | 0.2955 |
0.1982 | 20.0 | 1160 | 3.2756 | 0.2663 | 0.2652 | 0.2559 | 0.2978 | 0.2652 | 0.2843 | 0.2714 | 0.2652 | 0.2652 | 0.2652 |
0.282 | 21.0 | 1218 | 3.3012 | 0.2658 | 0.2803 | 0.2746 | 0.2849 | 0.2803 | 0.2807 | 0.2630 | 0.2803 | 0.2803 | 0.2803 |
0.6119 | 22.0 | 1276 | 3.3820 | 0.2684 | 0.2879 | 0.2772 | 0.2949 | 0.2879 | 0.3025 | 0.2745 | 0.2879 | 0.2879 | 0.2879 |
0.0598 | 23.0 | 1334 | 3.4127 | 0.2546 | 0.2652 | 0.2601 | 0.2570 | 0.2652 | 0.2616 | 0.2602 | 0.2652 | 0.2652 | 0.2652 |
0.0219 | 24.0 | 1392 | 3.6584 | 0.2391 | 0.2576 | 0.2488 | 0.2711 | 0.2576 | 0.2541 | 0.2377 | 0.2576 | 0.2576 | 0.2576 |
0.2059 | 25.0 | 1450 | 3.6858 | 0.2517 | 0.2652 | 0.2600 | 0.2717 | 0.2652 | 0.2684 | 0.2488 | 0.2652 | 0.2652 | 0.2652 |
0.5641 | 26.0 | 1508 | 3.8254 | 0.2395 | 0.2576 | 0.2515 | 0.2455 | 0.2576 | 0.2537 | 0.2406 | 0.2576 | 0.2576 | 0.2576 |
0.3301 | 27.0 | 1566 | 3.9264 | 0.2529 | 0.2727 | 0.2655 | 0.2580 | 0.2727 | 0.2670 | 0.2550 | 0.2727 | 0.2727 | 0.2727 |
0.2333 | 28.0 | 1624 | 4.0348 | 0.2007 | 0.2197 | 0.2100 | 0.1977 | 0.2197 | 0.2053 | 0.2077 | 0.2197 | 0.2197 | 0.2197 |
0.1264 | 29.0 | 1682 | 4.0264 | 0.2224 | 0.2348 | 0.2295 | 0.2281 | 0.2348 | 0.2308 | 0.2225 | 0.2348 | 0.2348 | 0.2348 |
0.0029 | 30.0 | 1740 | 4.0181 | 0.2304 | 0.2424 | 0.2376 | 0.2351 | 0.2424 | 0.2380 | 0.2304 | 0.2424 | 0.2424 | 0.2424 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for corranm/square_run_square_run_first_vote_full_pic_25
Base model
google/vit-base-patch16-224