layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the layoutlm_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2976
  • Precision: 0.9298
  • Recall: 0.9416
  • F1: 0.9357
  • Accuracy: 0.9393

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 4.17 250 1.0222 0.7468 0.7949 0.7701 0.8014
1.3962 8.33 500 0.5292 0.8414 0.8735 0.8571 0.8778
1.3962 12.5 750 0.3844 0.9049 0.9192 0.9120 0.9249
0.335 16.67 1000 0.3302 0.9243 0.9326 0.9285 0.9342
0.335 20.83 1250 0.3062 0.9204 0.9349 0.9276 0.9406
0.1419 25.0 1500 0.2931 0.9268 0.9386 0.9327 0.9414
0.1419 29.17 1750 0.2925 0.9248 0.9386 0.9316 0.9359
0.0801 33.33 2000 0.2963 0.9276 0.9394 0.9334 0.9359
0.0801 37.5 2250 0.2916 0.9283 0.9401 0.9342 0.9363
0.0584 41.67 2500 0.2976 0.9298 0.9416 0.9357 0.9393

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
8
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cor-c/layoutlmv3-finetuned-cord_100

Finetuned
(223)
this model

Evaluation results