leaderboard-pt-pr-bot's picture
Adding the Open Portuguese LLM Leaderboard Evaluation Results
7518517 verified
|
raw
history blame
26.5 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
  - axolotl
base_model: mistralai/Mistral-Nemo-Base-2407
datasets:
  - cognitivecomputations/Dolphin-2.9
  - teknium/OpenHermes-2.5
  - m-a-p/CodeFeedback-Filtered-Instruction
  - cognitivecomputations/dolphin-coder
  - cognitivecomputations/samantha-data
  - microsoft/orca-math-word-problems-200k
  - Locutusque/function-calling-chatml
  - internlm/Agent-FLAN
model-index:
  - name: dolphin-2.9.3-mistral-nemo-12b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: ENEM Challenge (No Images)
          type: eduagarcia/enem_challenge
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 72.08
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BLUEX (No Images)
          type: eduagarcia-temp/BLUEX_without_images
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 62.45
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: OAB Exams
          type: eduagarcia/oab_exams
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 52.71
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 RTE
          type: assin2
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 93.08
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 STS
          type: eduagarcia/portuguese_benchmark
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: pearson
            value: 80.83
            name: pearson
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: FaQuAD NLI
          type: ruanchaves/faquad-nli
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 81.28
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HateBR Binary
          type: ruanchaves/hatebr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 85.85
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: PT Hate Speech Binary
          type: hate_speech_portuguese
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 73.07
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: tweetSentBR
          type: eduagarcia/tweetsentbr_fewshot
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 72.36
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b
          name: Open Portuguese LLM Leaderboard

Dolphin 2.9.3 Mistral Nemo 12b 🐬

Curated and trained by Eric Hartford and Cognitive Computations

Discord Discord: https://discord.gg/h3K4XGj2RH

Our appreciation for the sponsors of Dolphin 2.9.3:

This model is based on mistralai/Mistral-Nemo-Base-2407, and is governed by the apache 2.0 license.

The base model has 128K context, and our finetuning used 8192 sequence length.

Dolphin 2.9.3 uses ChatML prompt template format.

example:

<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Dolphin-2.9.3 has a variety of instruction following, conversational, and coding skills. It also has initial agentic abilities and supports function calling.

Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.

Dolphin is licensed according to apache 2.0 license. We grant permission for any use, including commercial. Dolphin was trained on data generated from GPT4, among other models.

Evals

See evals
|                           Tasks                           |Version|Filter|n-shot|        Metric         |   |Value |   |Stderr|
|-----------------------------------------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
|leaderboard                                                |N/A    |none  |     0|acc                    |↑  |0.3437|±  |0.0043|
|                                                           |       |none  |     0|acc_norm               |↑  |0.5076|±  |0.0053|
|                                                           |       |none  |     0|exact_match            |↑  |0.0536|±  |0.0061|
|                                                           |       |none  |     0|inst_level_loose_acc   |↑  |0.4388|±  |N/A   |
|                                                           |       |none  |     0|inst_level_strict_acc  |↑  |0.3741|±  |N/A   |
|                                                           |       |none  |     0|prompt_level_loose_acc |↑  |0.3105|±  |0.0199|
|                                                           |       |none  |     0|prompt_level_strict_acc|↑  |0.2477|±  |0.0186|
| - leaderboard_bbh                                         |N/A    |none  |     3|acc_norm               |↑  |0.5549|±  |0.0061|
|  - leaderboard_bbh_boolean_expressions                    |      0|none  |     3|acc_norm               |↑  |0.8640|±  |0.0217|
|  - leaderboard_bbh_causal_judgement                       |      0|none  |     3|acc_norm               |↑  |0.6417|±  |0.0352|
|  - leaderboard_bbh_date_understanding                     |      0|none  |     3|acc_norm               |↑  |0.6080|±  |0.0309|
|  - leaderboard_bbh_disambiguation_qa                      |      0|none  |     3|acc_norm               |↑  |0.6480|±  |0.0303|
|  - leaderboard_bbh_formal_fallacies                       |      0|none  |     3|acc_norm               |↑  |0.5360|±  |0.0316|
|  - leaderboard_bbh_geometric_shapes                       |      0|none  |     3|acc_norm               |↑  |0.5240|±  |0.0316|
|  - leaderboard_bbh_hyperbaton                             |      0|none  |     3|acc_norm               |↑  |0.6440|±  |0.0303|
|  - leaderboard_bbh_logical_deduction_five_objects         |      0|none  |     3|acc_norm               |↑  |0.4600|±  |0.0316|
|  - leaderboard_bbh_logical_deduction_seven_objects        |      0|none  |     3|acc_norm               |↑  |0.4680|±  |0.0316|
|  - leaderboard_bbh_logical_deduction_three_objects        |      0|none  |     3|acc_norm               |↑  |0.7000|±  |0.0290|
|  - leaderboard_bbh_movie_recommendation                   |      0|none  |     3|acc_norm               |↑  |0.8160|±  |0.0246|
|  - leaderboard_bbh_navigate                               |      0|none  |     3|acc_norm               |↑  |0.6040|±  |0.0310|
|  - leaderboard_bbh_object_counting                        |      0|none  |     3|acc_norm               |↑  |0.3680|±  |0.0306|
|  - leaderboard_bbh_penguins_in_a_table                    |      0|none  |     3|acc_norm               |↑  |0.5548|±  |0.0413|
|  - leaderboard_bbh_reasoning_about_colored_objects        |      0|none  |     3|acc_norm               |↑  |0.6320|±  |0.0306|
|  - leaderboard_bbh_ruin_names                             |      0|none  |     3|acc_norm               |↑  |0.7440|±  |0.0277|
|  - leaderboard_bbh_salient_translation_error_detection    |      0|none  |     3|acc_norm               |↑  |0.5280|±  |0.0316|
|  - leaderboard_bbh_snarks                                 |      0|none  |     3|acc_norm               |↑  |0.6292|±  |0.0363|
|  - leaderboard_bbh_sports_understanding                   |      0|none  |     3|acc_norm               |↑  |0.8040|±  |0.0252|
|  - leaderboard_bbh_temporal_sequences                     |      0|none  |     3|acc_norm               |↑  |0.4680|±  |0.0316|
|  - leaderboard_bbh_tracking_shuffled_objects_five_objects |      0|none  |     3|acc_norm               |↑  |0.2160|±  |0.0261|
|  - leaderboard_bbh_tracking_shuffled_objects_seven_objects|      0|none  |     3|acc_norm               |↑  |0.1160|±  |0.0203|
|  - leaderboard_bbh_tracking_shuffled_objects_three_objects|      0|none  |     3|acc_norm               |↑  |0.3000|±  |0.0290|
|  - leaderboard_bbh_web_of_lies                            |      0|none  |     3|acc_norm               |↑  |0.4880|±  |0.0317|
| - leaderboard_gpqa                                        |N/A    |none  |     0|acc_norm               |↑  |0.3146|±  |0.0135|
|  - leaderboard_gpqa_diamond                               |      1|none  |     0|acc_norm               |↑  |0.3182|±  |0.0332|
|  - leaderboard_gpqa_extended                              |      1|none  |     0|acc_norm               |↑  |0.3187|±  |0.0200|
|  - leaderboard_gpqa_main                                  |      1|none  |     0|acc_norm               |↑  |0.3080|±  |0.0218|
| - leaderboard_ifeval                                      |      2|none  |     0|inst_level_loose_acc   |↑  |0.4388|±  |N/A   |
|                                                           |       |none  |     0|inst_level_strict_acc  |↑  |0.3741|±  |N/A   |
|                                                           |       |none  |     0|prompt_level_loose_acc |↑  |0.3105|±  |0.0199|
|                                                           |       |none  |     0|prompt_level_strict_acc|↑  |0.2477|±  |0.0186|
|  - leaderboard_math_algebra_hard                          |      1|none  |     4|exact_match            |↑  |0.0749|±  |0.0150|
|  - leaderboard_math_counting_and_prob_hard                |      1|none  |     4|exact_match            |↑  |0.0244|±  |0.0140|
|  - leaderboard_math_geometry_hard                         |      1|none  |     4|exact_match            |↑  |0.0227|±  |0.0130|
| - leaderboard_math_hard                                   |N/A    |none  |     4|exact_match            |↑  |0.0536|±  |0.0061|
|  - leaderboard_math_intermediate_algebra_hard             |      1|none  |     4|exact_match            |↑  |0.0250|±  |0.0093|
|  - leaderboard_math_num_theory_hard                       |      1|none  |     4|exact_match            |↑  |0.0390|±  |0.0156|
|  - leaderboard_math_prealgebra_hard                       |      1|none  |     4|exact_match            |↑  |0.1295|±  |0.0242|
|  - leaderboard_math_precalculus_hard                      |      1|none  |     4|exact_match            |↑  |0.0296|±  |0.0146|
| - leaderboard_mmlu_pro                                    |    0.1|none  |     5|acc                    |↑  |0.3437|±  |0.0043|
| - leaderboard_musr                                        |N/A    |none  |     0|acc_norm               |↑  |0.4511|±  |0.0178|
|  - leaderboard_musr_murder_mysteries                      |      1|none  |     0|acc_norm               |↑  |0.5880|±  |0.0312|
|  - leaderboard_musr_object_placements                     |      1|none  |     0|acc_norm               |↑  |0.3438|±  |0.0297|
|  - leaderboard_musr_team_allocation                       |      1|none  |     0|acc_norm               |↑  |0.4240|±  |0.0313|

|         Groups         |Version|Filter|n-shot|        Metric         |   |Value |   |Stderr|
|------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
|leaderboard             |N/A    |none  |     0|acc                    |↑  |0.3437|±  |0.0043|
|                        |       |none  |     0|acc_norm               |↑  |0.5076|±  |0.0053|
|                        |       |none  |     0|exact_match            |↑  |0.0536|±  |0.0061|
|                        |       |none  |     0|inst_level_loose_acc   |↑  |0.4388|±  |N/A   |
|                        |       |none  |     0|inst_level_strict_acc  |↑  |0.3741|±  |N/A   |
|                        |       |none  |     0|prompt_level_loose_acc |↑  |0.3105|±  |0.0199|
|                        |       |none  |     0|prompt_level_strict_acc|↑  |0.2477|±  |0.0186|
| - leaderboard_bbh      |N/A    |none  |     3|acc_norm               |↑  |0.5549|±  |0.0061|
| - leaderboard_gpqa     |N/A    |none  |     0|acc_norm               |↑  |0.3146|±  |0.0135|
| - leaderboard_math_hard|N/A    |none  |     4|exact_match            |↑  |0.0536|±  |0.0061|
| - leaderboard_musr     |N/A    |none  |     0|acc_norm               |↑  |0.4511|±  |0.0178|

Training

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: /workspace/models/Mistral-Nemo-Base-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
# load_in_4bit: true
strict: false

datasets:
  - path: /workspace/datasets/dolphin-2.9.3/dolphin201-sharegpt2.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/SystemChat_filtered_sharegpt.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/SystemChat_multilingual_sharegpt.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-translate-sharegpt2.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/dolphin-coder-codegen-sharegpt2.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/not_samantha_norefusals.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/Orca-Math-resort-unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/agent_instruct_react_unfiltered.jsonl
    type: sharegpt  
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/toolbench_instruct_j1s1_3k_unfiltered.jsonl
    type: sharegpt  
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/toolbench_negative_unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/toolbench_react_10p_unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/toolbench_tflan_cot_30p_unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9.3/openhermes200k_unfiltered.jsonl
    type: sharegpt 
    conversation: chatml

chat_template: chatml
# adapter: qlora
# lora_r: 128
# lora_alpha: 16
# lora_modules_to_save: [embed_tokens, lm_head]
# lora_dropout: 0.05
# lora_target_linear: true


unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
- input_layernorm
- model.norm
- post_attention_layernorm
- self_attn.rotary_emb
# mlp.down_proj layers
- model.layers.0.mlp.down_proj
- model.layers.1.mlp.down_proj
- model.layers.4.mlp.down_proj
- model.layers.37.mlp.down_proj
- model.layers.24.mlp.down_proj
- model.layers.2.mlp.down_proj
- model.layers.38.mlp.down_proj
- model.layers.35.mlp.down_proj
- model.layers.25.mlp.down_proj
- model.layers.6.mlp.down_proj
- model.layers.22.mlp.down_proj
- model.layers.23.mlp.down_proj
- model.layers.3.mlp.down_proj
- model.layers.21.mlp.down_proj
- model.layers.5.mlp.down_proj
- model.layers.28.mlp.down_proj
- model.layers.20.mlp.down_proj
- model.layers.26.mlp.down_proj
- model.layers.19.mlp.down_proj
- model.layers.34.mlp.down_proj
# mlp.gate_proj layers
- model.layers.2.mlp.gate_proj
- model.layers.1.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.5.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.35.mlp.gate_proj
- model.layers.36.mlp.gate_proj
- model.layers.37.mlp.gate_proj
- model.layers.38.mlp.gate_proj
- model.layers.34.mlp.gate_proj
- model.layers.33.mlp.gate_proj
- model.layers.8.mlp.gate_proj
- model.layers.32.mlp.gate_proj
- model.layers.6.mlp.gate_proj
- model.layers.28.mlp.gate_proj
- model.layers.26.mlp.gate_proj
- model.layers.30.mlp.gate_proj
- model.layers.23.mlp.gate_proj
- model.layers.29.mlp.gate_proj
- model.layers.27.mlp.gate_proj
# mlp.up_proj layers
- model.layers.3.mlp.up_proj
- model.layers.4.mlp.up_proj
- model.layers.6.mlp.up_proj
- model.layers.2.mlp.up_proj
- model.layers.5.mlp.up_proj
- model.layers.8.mlp.up_proj
- model.layers.10.mlp.up_proj
- model.layers.9.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.0.mlp.up_proj
- model.layers.17.mlp.up_proj
- model.layers.15.mlp.up_proj
- model.layers.22.mlp.up_proj
- model.layers.18.mlp.up_proj
- model.layers.16.mlp.up_proj
- model.layers.11.mlp.up_proj
- model.layers.21.mlp.up_proj
- model.layers.23.mlp.up_proj
- model.layers.20.mlp.up_proj
- model.layers.27.mlp.up_proj
# self_attn.k_proj layers
- model.layers.30.self_attn.k_proj
- model.layers.27.self_attn.k_proj
- model.layers.25.self_attn.k_proj
- model.layers.33.self_attn.k_proj
- model.layers.26.self_attn.k_proj
- model.layers.31.self_attn.k_proj
- model.layers.35.self_attn.k_proj
- model.layers.39.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.21.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.36.self_attn.k_proj
- model.layers.20.self_attn.k_proj
- model.layers.37.self_attn.k_proj
- model.layers.29.self_attn.k_proj
- model.layers.32.self_attn.k_proj
- model.layers.16.self_attn.k_proj
- model.layers.18.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.7.self_attn.o_proj
- model.layers.6.self_attn.o_proj
- model.layers.9.self_attn.o_proj
- model.layers.5.self_attn.o_proj
- model.layers.27.self_attn.o_proj
- model.layers.26.self_attn.o_proj
- model.layers.4.self_attn.o_proj
- model.layers.31.self_attn.o_proj
- model.layers.8.self_attn.o_proj
- model.layers.16.self_attn.o_proj
- model.layers.3.self_attn.o_proj
- model.layers.10.self_attn.o_proj
- model.layers.18.self_attn.o_proj
- model.layers.33.self_attn.o_proj
- model.layers.17.self_attn.o_proj
- model.layers.32.self_attn.o_proj
- model.layers.30.self_attn.o_proj
- model.layers.2.self_attn.o_proj
- model.layers.15.self_attn.o_proj
- model.layers.11.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.14.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.9.self_attn.q_proj
- model.layers.8.self_attn.q_proj
- model.layers.18.self_attn.q_proj
- model.layers.12.self_attn.q_proj
- model.layers.13.self_attn.q_proj
- model.layers.19.self_attn.q_proj
- model.layers.16.self_attn.q_proj
- model.layers.10.self_attn.q_proj
- model.layers.17.self_attn.q_proj
- model.layers.7.self_attn.q_proj
- model.layers.5.self_attn.q_proj
- model.layers.20.self_attn.q_proj
- model.layers.3.self_attn.q_proj
- model.layers.26.self_attn.q_proj
- model.layers.27.self_attn.q_proj
- model.layers.28.self_attn.q_proj
- model.layers.33.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.27.self_attn.v_proj
- model.layers.20.self_attn.v_proj
- model.layers.24.self_attn.v_proj
- model.layers.25.self_attn.v_proj
- model.layers.30.self_attn.v_proj
- model.layers.2.self_attn.v_proj
- model.layers.23.self_attn.v_proj
- model.layers.22.self_attn.v_proj
- model.layers.26.self_attn.v_proj
- model.layers.33.self_attn.v_proj
- model.layers.37.self_attn.v_proj
- model.layers.7.self_attn.v_proj
- model.layers.4.self_attn.v_proj
- model.layers.18.self_attn.v_proj
- model.layers.31.self_attn.v_proj
- model.layers.17.self_attn.v_proj
- model.layers.35.self_attn.v_proj
- model.layers.32.self_attn.v_proj
- model.layers.21.self_attn.v_proj
- model.layers.3.self_attn.v_proj



dataset_prepared_path:  /workspace/axolotl/dolph-2.9.3-nemo-prepared
val_set_size: 0.01
output_dir: /workspace/axolotl/dolphin-2.9.3-mistral-nemo

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project: dolphin-2.9.3-Mistral-nemo
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32:

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
# evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
save_total_limit: 2
save_steps:
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
special_tokens:
  eos_token: "<|im_end|>"
  pad_token: "<pad>"
  bos_token: "<s>"
  unk_token: "<unk>"
tokens:
  - "<|im_start|>"


# fsdp:
#   - full_shard
#   - auto_wrap
# fsdp_config:
#   fsdp_limit_all_gathers: true
#   fsdp_sync_module_states: true
#   fsdp_offload_params: true
#   fsdp_use_orig_params: false
#   fsdp_cpu_ram_efficient_loading: true
#   fsdp_transformer_layer_cls_to_wrap: MixtralSparseMoeBlock
#   fsdp_state_dict_type: FULL_STATE_DICT
#   fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#   fsdp_sharding_strategy: FULL_SHARD
#   fsdp_forward_prefetch: false
#   fsdp_backward_prefetch: BACKWARD_PRE

Visualize in Weights & Biases

workspace/axolotl/dolphin-2.9.3-mistral-nemo

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5605

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.5691 1.0162 983 0.5734
0.5335 2.0174 1968 0.5609
0.5297 2.9639 2901 0.5605

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1

Open Portuguese LLM Leaderboard Evaluation Results

Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard

Metric Value
Average 74.86
ENEM Challenge (No Images) 72.08
BLUEX (No Images) 62.45
OAB Exams 52.71
Assin2 RTE 93.08
Assin2 STS 80.83
FaQuAD NLI 81.28
HateBR Binary 85.85
PT Hate Speech Binary 73.07
tweetSentBR 72.36