Update code snippet to use sentence-level embeddings
#2
by
tomaarsen
HF staff
- opened
README.md
CHANGED
@@ -24,7 +24,7 @@ This checkpoint is first trained on code data via masked language modeling (MLM)
|
|
24 |
### How to use
|
25 |
This checkpoint consists of an encoder (130M model), which can be used to extract code embeddings of 1024 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (https://arxiv.org/pdf/2305.06161.pdf).
|
26 |
|
27 |
-
```
|
28 |
from transformers import AutoModel, AutoTokenizer
|
29 |
|
30 |
checkpoint = "codesage/codesage-small"
|
@@ -33,10 +33,10 @@ device = "cuda" # for GPU usage or "cpu" for CPU usage
|
|
33 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
|
34 |
model = AutoModel.from_pretrained(checkpoint, trust_remote_code=True).to(device)
|
35 |
|
36 |
-
inputs = tokenizer
|
37 |
-
embedding = model(inputs)
|
38 |
-
print(f'Dimension of the embedding: {embedding
|
39 |
-
# Dimension of the embedding: torch.Size([
|
40 |
```
|
41 |
|
42 |
### BibTeX entry and citation info
|
|
|
24 |
### How to use
|
25 |
This checkpoint consists of an encoder (130M model), which can be used to extract code embeddings of 1024 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (https://arxiv.org/pdf/2305.06161.pdf).
|
26 |
|
27 |
+
```python
|
28 |
from transformers import AutoModel, AutoTokenizer
|
29 |
|
30 |
checkpoint = "codesage/codesage-small"
|
|
|
33 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
|
34 |
model = AutoModel.from_pretrained(checkpoint, trust_remote_code=True).to(device)
|
35 |
|
36 |
+
inputs = tokenizer("def print_hello_world():\tprint('Hello World!')", return_tensors="pt").to(device)
|
37 |
+
embedding = model(**inputs).pooler_output
|
38 |
+
print(f'Dimension of the embedding: {embedding.size()}')
|
39 |
+
# Dimension of the embedding: torch.Size([1, 1024])
|
40 |
```
|
41 |
|
42 |
### BibTeX entry and citation info
|