scene_segmentation / README.md
Colin
Training in progress epoch 2
9076485
|
raw
history blame
4.61 kB
metadata
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
  - generated_from_keras_callback
model-index:
  - name: code135/scene_segmentation
    results: []

code135/scene_segmentation

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: nan
  • Validation Loss: nan
  • Validation Mean Iou: 0.0183
  • Validation Mean Accuracy: 0.1667
  • Validation Overall Accuracy: 0.1607
  • Validation Accuracy Ciel: 1.0
  • Validation Accuracy Vegetation: 0.0
  • Validation Accuracy Batiment peu vitre (<50%): 0.0
  • Validation Accuracy Batiment tres vitre (>50%): 0.0
  • Validation Accuracy Couvert: 0.0
  • Validation Accuracy Autre: 0.0
  • Validation Iou Ciel: 0.1098
  • Validation Iou Vegetation: 0.0
  • Validation Iou Batiment peu vitre (<50%): 0.0
  • Validation Iou Batiment tres vitre (>50%): 0.0
  • Validation Iou Couvert: 0.0
  • Validation Iou Autre: 0.0
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 6e-05, 'decay_steps': 120, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Validation Mean Iou Validation Mean Accuracy Validation Overall Accuracy Validation Accuracy Ciel Validation Accuracy Vegetation Validation Accuracy Batiment peu vitre (<50%) Validation Accuracy Batiment tres vitre (>50%) Validation Accuracy Couvert Validation Accuracy Autre Validation Iou Ciel Validation Iou Vegetation Validation Iou Batiment peu vitre (<50%) Validation Iou Batiment tres vitre (>50%) Validation Iou Couvert Validation Iou Autre Epoch
nan nan 0.0183 0.1667 0.1607 1.0 0.0 0.0 0.0 0.0 0.0 0.1098 0.0 0.0 0.0 0.0 0.0 0
nan nan 0.0183 0.1667 0.1607 1.0 0.0 0.0 0.0 0.0 0.0 0.1098 0.0 0.0 0.0 0.0 0.0 1
nan nan 0.0183 0.1667 0.1607 1.0 0.0 0.0 0.0 0.0 0.0 0.1098 0.0 0.0 0.0 0.0 0.0 2

Framework versions

  • Transformers 4.46.2
  • TensorFlow 2.17.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3