|
--- |
|
datasets: |
|
- Intel/orca_dpo_pairs |
|
base_model: |
|
- Qwen/Qwen2.5-0.5B-Instruct |
|
license: apache-2.0 |
|
--- |
|
# Fine-tuned Qwen/Qwen2.5-0.5B-Instruct Model |
|
|
|
## Model Overview |
|
|
|
This is a fine-tuned version of the Qwen/Qwen2.5-0.5B-Instruct model. The fine-tuning process utilized the Intel/orca_dpo_pairs dataset and applied DPO (Direct Preference Optimization) and LoRA (Low-Rank Adaptation) techniques. |
|
|
|
**Note**: This fine-tuning was done following the instructions in [this blog](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac). |
|
|
|
## Fine-tuning Details |
|
|
|
- **Base Model**: Qwen/Qwen2.5-0.5B-Instruct |
|
- **Dataset**: Intel/orca_dpo_pairs |
|
- **Fine-tuning Method**: DPO + LoRA |
|
|
|
## Usage Instructions |
|
|
|
### Install Dependencies |
|
|
|
Before using this model, make sure you have the following dependencies installed: |
|
|
|
```bash |
|
pip install transformers datasets |
|
``` |
|
|
|
### Load the model |
|
|
|
```python |
|
import transformers |
|
from transformers import AutoConfig, AutoModel, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("drive/MyDrive/result/Qwen-DPO") |
|
|
|
message = [ |
|
{"role": "system", "content": "You are a helpful assistant chatbot."}, |
|
{"role": "user", "content": "What is a Large Language Model?"} |
|
] |
|
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) |
|
|
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model="co-gy/Qwen-DPO", |
|
tokenizer=tokenizer |
|
) |
|
|
|
sequences = pipeline( |
|
prompt, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
num_return_sequences=1, |
|
max_length=200, |
|
) |
|
print(sequences[0]['generated_text']) |
|
``` |