LunarLander-v2 / config.json
cmpatino's picture
Upload trained agent for the Luner Lander env
0128f1f
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f770c29f250>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f770c29f2e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f770c29f370>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f770c29f400>", "_build": "<function ActorCriticPolicy._build at 0x7f770c29f490>", "forward": "<function ActorCriticPolicy.forward at 0x7f770c29f520>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f770c29f5b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f770c29f640>", "_predict": "<function ActorCriticPolicy._predict at 0x7f770c29f6d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f770c29f760>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f770c29f7f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f770c29f880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f770c290580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684277090489421359, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqjF75ZErY/rhXfvg6DxL4rFoG9HR9NvgAAAAAAAAAAc72rvXSS+j522bG9NPC+vvbyjL0qGQy9AAAAAAAAAAAa8im99rxkumSsGrhaAyqzPsmYO0WNNTcAAIA/AACAP1qzgL2kboU/Srq/vU74Fr9ha9u9Q77kvAAAAAAAAAAAgDpmPYLwsD+ChiU+4ioAv+IWNz7awWE9AAAAAAAAAAAzNaA8rsGguk1QbToLoEO2EgZmuW0CiLkAAIA/AACAP5qr7LyWtnI9Wyh/PjPcK77Qlho+kkiLvQAAAAAAAAAAABrGPVz7N7rZysw63t/jNdkCx7lo0vC5AAAAAAAAgD9AcQo+kd4BPuPtU76w/6m+6rWDvcs7oz0AAAAAAAAAAJ32W75uLFg/n9CRvo+g/77eCZm+PQdzvQAAAAAAAAAAAKayvVqPbz/Hhgq+QAoGvxU5773aWn69AAAAAAAAAAATMoG+q50eP1iGEz4WtKC+so98vY6uDT0AAAAAAAAAAM2OWTxIw4q67hKst+u+W7JeilE5h27GNgAAgD8AAIA/symnvVy9IbwAJpY8ny9LPFSjiT0OCSy9AAAAAAAAgD/NzT2+lBbfPu6Y+T5z+X6+iv1pvT7vtD4AAAAAAAAAAEDEsb1CEYY+kujjPeMEgr6aVLm8eB/5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLVnfVI7NmMAWyUTU4BjAF0lEdAkLoLtzCDVnV9lChoBkdAc7+gRsdkrmgHTVkBaAhHQJC6FvOyE+R1fZQoaAZHQHE8VOfukUNoB00aAWgIR0CQuxrR0EHMdX2UKGgGR0BzBJBdD6WPaAdL12gIR0CQu1d7fHghdX2UKGgGR0BTK5VGTcIraAdLqGgIR0CQu2++dsi0dX2UKGgGR0By5IihWYF8aAdL8WgIR0CQvEdU83dcdX2UKGgGR0Bu0+YOUdJbaAdNAQFoCEdAkL18QAdXDHV9lChoBkdAbiTbnHNorWgHS/RoCEdAkL3rm2b5M3V9lChoBkdAck68baRISWgHTQUBaAhHQJC+Xqjafz11fZQoaAZHQHMN6lP8AJdoB0vqaAhHQJC/Mi4axX51fZQoaAZHQHJSJtix3V1oB0vyaAhHQJC/2yJKraN1fZQoaAZHQG/fPwVj7Q9oB0vhaAhHQJDATxiG34N1fZQoaAZHQHJvkvsZ5zJoB00RAWgIR0CQwHJhvze5dX2UKGgGR0BxKPIYFaB7aAdNAgFoCEdAkMCgdGRV63V9lChoBkdAcZLAJswcpGgHTQcBaAhHQJDA6uX/o7p1fZQoaAZHQHKS2mpEQXhoB0v9aAhHQJDBD+6y0KJ1fZQoaAZHQHEFlU2kzoFoB02aAWgIR0CQwqAPuogndX2UKGgGR0Bw6aNvOyE+aAdNIQFoCEdAkMMMxsVLz3V9lChoBkdAcACmxdIGyGgHTRkBaAhHQJDDG09hZyN1fZQoaAZHQHOPgOOKfnRoB00XAWgIR0CQwygk1MufdX2UKGgGR0BxOOe05U97aAdNAAFoCEdAkMNxc/t6X3V9lChoBkdAThJfOUt7KWgHS7JoCEdAkMN2oaUA1nV9lChoBkdATRKHARChOGgHS6JoCEdAkMPBB7eEZnV9lChoBkdAcSJp0OmR/2gHS/1oCEdAkMR1B+nZTXV9lChoBkdAc9jix3V092gHS/xoCEdAkMTU+otL+XV9lChoBkdAcxSZxrBTGmgHS+JoCEdAkMXYkmhM8HV9lChoBkdAXwj0/W1+iWgHTegDaAhHQJDGHLvCuU51fZQoaAZHQG/sGCAc1fpoB0v2aAhHQJDHj4QBgeB1fZQoaAZHQHCEOevpyIZoB00AAWgIR0CQx7H5JsfrdX2UKGgGR0BxqaZDzAeraAdNGwFoCEdAkMfbwrlNlHV9lChoBkdAcCYP91loUWgHTR8BaAhHQJDIQs189fV1fZQoaAZHQHBEkwWWQfZoB00nAWgIR0CQyFEUCaJAdX2UKGgGR0BvgGHSF49paAdL4GgIR0CQyPs6aLGadX2UKGgGR0BzXpet0V8DaAdNBgFoCEdAkMnvcN6PbXV9lChoBkdAcF75wfhddGgHTQoBaAhHQJDJ/xYq5LB1fZQoaAZHQHCfcYl6Z6VoB00SAWgIR0CQyqYlIEr5dX2UKGgGR0BzIvQPZqVRaAdNBgFoCEdAkMq14xDb8HV9lChoBkdAb3Kkka/ATWgHS/5oCEdAkNtcOG0u2HV9lChoBkdAcvp+6RQrMGgHTVIBaAhHQJDbluEVWS51fZQoaAZHQHKYLH2h7E5oB00yAWgIR0CQ25OMl1KXdX2UKGgGR0ByYi2JBPbgaAdL52gIR0CQ3BjnV5KOdX2UKGgGR0BxsncIqsltaAdNOgFoCEdAkN0s5jpcHHV9lChoBkdAcXnluFYdQ2gHTSABaAhHQJDd1XPqs2h1fZQoaAZHQHEEb127nPpoB0vvaAhHQJDd5qXWvr51fZQoaAZHQG+DtcGC7K9oB0vyaAhHQJDePmjj7yh1fZQoaAZHQHEJp8v24/hoB00QAWgIR0CQ34icG1QZdX2UKGgGR0ByrMdq+JxeaAdL+WgIR0CQ35yLhrFgdX2UKGgGR0Bxsgz0pVjqaAdNMwFoCEdAkN/kpuuRtHV9lChoBkdAccBpda+vhmgHS+VoCEdAkOAWS6lLvnV9lChoBkdAcwYthd+ocmgHS9doCEdAkOBjBuXNT3V9lChoBkdAcfAdOIqLCWgHTTgBaAhHQJDgiwPiDNB1fZQoaAZHQHCdqYmb9ZRoB00PAWgIR0CQ4SO/+Kj0dX2UKGgGR0BvYHmRvFWGaAdL92gIR0CQ4hOoYNy6dX2UKGgGR0BvhtF4LThHaAdNDQFoCEdAkOJ0nXumanV9lChoBkdAcB9eFcpsoGgHTQgBaAhHQJDikoXsPat1fZQoaAZHQHLQLHMlkYpoB00CAWgIR0CQ4yr9ETg3dX2UKGgGR0BwnJzFMqSYaAdNPQFoCEdAkONEJ4SpSHV9lChoBkdAcylq//NqxmgHS+hoCEdAkOPELlV94XV9lChoBkdAcYNx1PnB+GgHS9xoCEdAkOQqGgzxgHV9lChoBkdAcblszVMEimgHS+loCEdAkOSvIKc/dXV9lChoBkdAb0dGgi/wiWgHS/hoCEdAkOWZAD7qIXV9lChoBkdAcm1/QBxPwmgHS9VoCEdAkOZovnKW9nV9lChoBkdAbK5vBrN4aGgHS+xoCEdAkObadxyXD3V9lChoBkdAcIJ1jiGWU2gHTQEBaAhHQJDniDqW1MN1fZQoaAZHQG3KdqtYB/9oB00FAWgIR0CQ6PXdTHbRdX2UKGgGR0Byj0cOskpraAdNDAFoCEdAkOmHvc8DCHV9lChoBkdAb4pGmUGFBmgHTSQBaAhHQJDp2bG3nZF1fZQoaAZHQHEyFy7wrlNoB00AAWgIR0CQ6gTDwYtQdX2UKGgGR0Bx6k0bcXWOaAdL4GgIR0CQ6iOXmeUZdX2UKGgGR0ByNj4L1EmZaAdL1mgIR0CQ6kWlMyrQdX2UKGgGR0Bwqv3j+717aAdL42gIR0CQ6vFEiMYNdX2UKGgGR0Bu3lSS/0ulaAdNBwFoCEdAkO1MdT5wfnV9lChoBkdAcU4n752yLWgHTREBaAhHQJDtoGiYb851fZQoaAZHQHEXK7/XGwRoB0vUaAhHQJDvHrZ8KHB1fZQoaAZHQHDSQDaGpMpoB00WAWgIR0CQ78nuiN83dX2UKGgGR0BxQ0P07KaHaAdL2mgIR0CQ8APGQ0XQdX2UKGgGR0BycI6wMYuTaAdNPwFoCEdAkPBptrKvFHV9lChoBkdAcOeYMfA9FGgHTTgBaAhHQJDwljurp7l1fZQoaAZHQFBA1nuiN85oB0ulaAhHQJDxI46wMYx1fZQoaAZHQHEUDPa+N99oB0v1aAhHQJDxy+wkgOl1fZQoaAZHQHBLOWOZLIxoB0vfaAhHQJDy+0E5hjR1fZQoaAZHQHDqJYDDCP9oB0vsaAhHQJDzDE9+w1R1fZQoaAZHQHDpv0I1LrZoB0vqaAhHQJDza+GoJiR1fZQoaAZHQHJA2Awwj+toB01lAWgIR0CQ83fMfRu1dX2UKGgGR0Bwx3iFTNt7aAdL+2gIR0CQ85mZmZmadX2UKGgGR0ByYEAiml67aAdNEgFoCEdAkPOyJGe+VXV9lChoBkdAcKyR2r4nGGgHS/VoCEdAkPQQL3K0U3V9lChoBkdAcXaWQwK0D2gHS/doCEdAkPVh9LHuJHV9lChoBkdAcjV89wFTvWgHTQMBaAhHQJD135ckdFR1fZQoaAZHwGCSTIFNcnpoB0vqaAhHQJD2JM23rlh1fZQoaAZHQHFwHkHUtqZoB00AAWgIR0CQ93xvegtfdX2UKGgGR0BxL6brkbPyaAdL+mgIR0CQ+AMLWqcWdX2UKGgGR0BxP7T/hl19aAdNHQFoCEdAkPg9l/Yra3V9lChoBkdAccq4oJAt4GgHTSoBaAhHQJD4fFS88Ld1fZQoaAZHQHFlR1oxpL5oB00gAWgIR0CQ+LzZ6D5CdX2UKGgGR0BxAZ37k4m1aAdL/mgIR0CQ+lbVBlcydX2UKGgGR0BxdVv1lGwzaAdNEAFoCEdAkPpx3/xUenV9lChoBkdAbpc2sJY1YWgHTT0BaAhHQJD6mM0gr6N1fZQoaAZHQHD2SP2f029oB00XAWgIR0CQ+pfKp1ifdX2UKGgGR0BxDGsT37DVaAdNAQFoCEdAkPq8HfMwDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}