Upload trained agent for the Luner Lander env
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.59 +/- 27.40
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f770c29f250>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f770c29f2e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f770c29f370>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f770c29f400>", "_build": "<function ActorCriticPolicy._build at 0x7f770c29f490>", "forward": "<function ActorCriticPolicy.forward at 0x7f770c29f520>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f770c29f5b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f770c29f640>", "_predict": "<function ActorCriticPolicy._predict at 0x7f770c29f6d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f770c29f760>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f770c29f7f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f770c29f880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f770c290580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684277090489421359, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqjF75ZErY/rhXfvg6DxL4rFoG9HR9NvgAAAAAAAAAAc72rvXSS+j522bG9NPC+vvbyjL0qGQy9AAAAAAAAAAAa8im99rxkumSsGrhaAyqzPsmYO0WNNTcAAIA/AACAP1qzgL2kboU/Srq/vU74Fr9ha9u9Q77kvAAAAAAAAAAAgDpmPYLwsD+ChiU+4ioAv+IWNz7awWE9AAAAAAAAAAAzNaA8rsGguk1QbToLoEO2EgZmuW0CiLkAAIA/AACAP5qr7LyWtnI9Wyh/PjPcK77Qlho+kkiLvQAAAAAAAAAAABrGPVz7N7rZysw63t/jNdkCx7lo0vC5AAAAAAAAgD9AcQo+kd4BPuPtU76w/6m+6rWDvcs7oz0AAAAAAAAAAJ32W75uLFg/n9CRvo+g/77eCZm+PQdzvQAAAAAAAAAAAKayvVqPbz/Hhgq+QAoGvxU5773aWn69AAAAAAAAAAATMoG+q50eP1iGEz4WtKC+so98vY6uDT0AAAAAAAAAAM2OWTxIw4q67hKst+u+W7JeilE5h27GNgAAgD8AAIA/symnvVy9IbwAJpY8ny9LPFSjiT0OCSy9AAAAAAAAgD/NzT2+lBbfPu6Y+T5z+X6+iv1pvT7vtD4AAAAAAAAAAEDEsb1CEYY+kujjPeMEgr6aVLm8eB/5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLVnfVI7NmMAWyUTU4BjAF0lEdAkLoLtzCDVnV9lChoBkdAc7+gRsdkrmgHTVkBaAhHQJC6FvOyE+R1fZQoaAZHQHE8VOfukUNoB00aAWgIR0CQuxrR0EHMdX2UKGgGR0BzBJBdD6WPaAdL12gIR0CQu1d7fHghdX2UKGgGR0BTK5VGTcIraAdLqGgIR0CQu2++dsi0dX2UKGgGR0By5IihWYF8aAdL8WgIR0CQvEdU83dcdX2UKGgGR0Bu0+YOUdJbaAdNAQFoCEdAkL18QAdXDHV9lChoBkdAbiTbnHNorWgHS/RoCEdAkL3rm2b5M3V9lChoBkdAck68baRISWgHTQUBaAhHQJC+Xqjafz11fZQoaAZHQHMN6lP8AJdoB0vqaAhHQJC/Mi4axX51fZQoaAZHQHJSJtix3V1oB0vyaAhHQJC/2yJKraN1fZQoaAZHQG/fPwVj7Q9oB0vhaAhHQJDATxiG34N1fZQoaAZHQHJvkvsZ5zJoB00RAWgIR0CQwHJhvze5dX2UKGgGR0BxKPIYFaB7aAdNAgFoCEdAkMCgdGRV63V9lChoBkdAcZLAJswcpGgHTQcBaAhHQJDA6uX/o7p1fZQoaAZHQHKS2mpEQXhoB0v9aAhHQJDBD+6y0KJ1fZQoaAZHQHEFlU2kzoFoB02aAWgIR0CQwqAPuogndX2UKGgGR0Bw6aNvOyE+aAdNIQFoCEdAkMMMxsVLz3V9lChoBkdAcACmxdIGyGgHTRkBaAhHQJDDG09hZyN1fZQoaAZHQHOPgOOKfnRoB00XAWgIR0CQwygk1MufdX2UKGgGR0BxOOe05U97aAdNAAFoCEdAkMNxc/t6X3V9lChoBkdAThJfOUt7KWgHS7JoCEdAkMN2oaUA1nV9lChoBkdATRKHARChOGgHS6JoCEdAkMPBB7eEZnV9lChoBkdAcSJp0OmR/2gHS/1oCEdAkMR1B+nZTXV9lChoBkdAc9jix3V092gHS/xoCEdAkMTU+otL+XV9lChoBkdAcxSZxrBTGmgHS+JoCEdAkMXYkmhM8HV9lChoBkdAXwj0/W1+iWgHTegDaAhHQJDGHLvCuU51fZQoaAZHQG/sGCAc1fpoB0v2aAhHQJDHj4QBgeB1fZQoaAZHQHCEOevpyIZoB00AAWgIR0CQx7H5JsfrdX2UKGgGR0BxqaZDzAeraAdNGwFoCEdAkMfbwrlNlHV9lChoBkdAcCYP91loUWgHTR8BaAhHQJDIQs189fV1fZQoaAZHQHBEkwWWQfZoB00nAWgIR0CQyFEUCaJAdX2UKGgGR0BvgGHSF49paAdL4GgIR0CQyPs6aLGadX2UKGgGR0BzXpet0V8DaAdNBgFoCEdAkMnvcN6PbXV9lChoBkdAcF75wfhddGgHTQoBaAhHQJDJ/xYq5LB1fZQoaAZHQHCfcYl6Z6VoB00SAWgIR0CQyqYlIEr5dX2UKGgGR0BzIvQPZqVRaAdNBgFoCEdAkMq14xDb8HV9lChoBkdAb3Kkka/ATWgHS/5oCEdAkNtcOG0u2HV9lChoBkdAcvp+6RQrMGgHTVIBaAhHQJDbluEVWS51fZQoaAZHQHKYLH2h7E5oB00yAWgIR0CQ25OMl1KXdX2UKGgGR0ByYi2JBPbgaAdL52gIR0CQ3BjnV5KOdX2UKGgGR0BxsncIqsltaAdNOgFoCEdAkN0s5jpcHHV9lChoBkdAcXnluFYdQ2gHTSABaAhHQJDd1XPqs2h1fZQoaAZHQHEEb127nPpoB0vvaAhHQJDd5qXWvr51fZQoaAZHQG+DtcGC7K9oB0vyaAhHQJDePmjj7yh1fZQoaAZHQHEJp8v24/hoB00QAWgIR0CQ34icG1QZdX2UKGgGR0ByrMdq+JxeaAdL+WgIR0CQ35yLhrFgdX2UKGgGR0Bxsgz0pVjqaAdNMwFoCEdAkN/kpuuRtHV9lChoBkdAccBpda+vhmgHS+VoCEdAkOAWS6lLvnV9lChoBkdAcwYthd+ocmgHS9doCEdAkOBjBuXNT3V9lChoBkdAcfAdOIqLCWgHTTgBaAhHQJDgiwPiDNB1fZQoaAZHQHCdqYmb9ZRoB00PAWgIR0CQ4SO/+Kj0dX2UKGgGR0BvYHmRvFWGaAdL92gIR0CQ4hOoYNy6dX2UKGgGR0BvhtF4LThHaAdNDQFoCEdAkOJ0nXumanV9lChoBkdAcB9eFcpsoGgHTQgBaAhHQJDikoXsPat1fZQoaAZHQHLQLHMlkYpoB00CAWgIR0CQ4yr9ETg3dX2UKGgGR0BwnJzFMqSYaAdNPQFoCEdAkONEJ4SpSHV9lChoBkdAcylq//NqxmgHS+hoCEdAkOPELlV94XV9lChoBkdAcYNx1PnB+GgHS9xoCEdAkOQqGgzxgHV9lChoBkdAcblszVMEimgHS+loCEdAkOSvIKc/dXV9lChoBkdAb0dGgi/wiWgHS/hoCEdAkOWZAD7qIXV9lChoBkdAcm1/QBxPwmgHS9VoCEdAkOZovnKW9nV9lChoBkdAbK5vBrN4aGgHS+xoCEdAkObadxyXD3V9lChoBkdAcIJ1jiGWU2gHTQEBaAhHQJDniDqW1MN1fZQoaAZHQG3KdqtYB/9oB00FAWgIR0CQ6PXdTHbRdX2UKGgGR0Byj0cOskpraAdNDAFoCEdAkOmHvc8DCHV9lChoBkdAb4pGmUGFBmgHTSQBaAhHQJDp2bG3nZF1fZQoaAZHQHEyFy7wrlNoB00AAWgIR0CQ6gTDwYtQdX2UKGgGR0Bx6k0bcXWOaAdL4GgIR0CQ6iOXmeUZdX2UKGgGR0ByNj4L1EmZaAdL1mgIR0CQ6kWlMyrQdX2UKGgGR0Bwqv3j+717aAdL42gIR0CQ6vFEiMYNdX2UKGgGR0Bu3lSS/0ulaAdNBwFoCEdAkO1MdT5wfnV9lChoBkdAcU4n752yLWgHTREBaAhHQJDtoGiYb851fZQoaAZHQHEXK7/XGwRoB0vUaAhHQJDvHrZ8KHB1fZQoaAZHQHDSQDaGpMpoB00WAWgIR0CQ78nuiN83dX2UKGgGR0BxQ0P07KaHaAdL2mgIR0CQ8APGQ0XQdX2UKGgGR0BycI6wMYuTaAdNPwFoCEdAkPBptrKvFHV9lChoBkdAcOeYMfA9FGgHTTgBaAhHQJDwljurp7l1fZQoaAZHQFBA1nuiN85oB0ulaAhHQJDxI46wMYx1fZQoaAZHQHEUDPa+N99oB0v1aAhHQJDxy+wkgOl1fZQoaAZHQHBLOWOZLIxoB0vfaAhHQJDy+0E5hjR1fZQoaAZHQHDqJYDDCP9oB0vsaAhHQJDzDE9+w1R1fZQoaAZHQHDpv0I1LrZoB0vqaAhHQJDza+GoJiR1fZQoaAZHQHJA2Awwj+toB01lAWgIR0CQ83fMfRu1dX2UKGgGR0Bwx3iFTNt7aAdL+2gIR0CQ85mZmZmadX2UKGgGR0ByYEAiml67aAdNEgFoCEdAkPOyJGe+VXV9lChoBkdAcKyR2r4nGGgHS/VoCEdAkPQQL3K0U3V9lChoBkdAcXaWQwK0D2gHS/doCEdAkPVh9LHuJHV9lChoBkdAcjV89wFTvWgHTQMBaAhHQJD135ckdFR1fZQoaAZHwGCSTIFNcnpoB0vqaAhHQJD2JM23rlh1fZQoaAZHQHFwHkHUtqZoB00AAWgIR0CQ93xvegtfdX2UKGgGR0BxL6brkbPyaAdL+mgIR0CQ+AMLWqcWdX2UKGgGR0BxP7T/hl19aAdNHQFoCEdAkPg9l/Yra3V9lChoBkdAccq4oJAt4GgHTSoBaAhHQJD4fFS88Ld1fZQoaAZHQHFlR1oxpL5oB00gAWgIR0CQ+LzZ6D5CdX2UKGgGR0BxAZ37k4m1aAdL/mgIR0CQ+lbVBlcydX2UKGgGR0BxdVv1lGwzaAdNEAFoCEdAkPpx3/xUenV9lChoBkdAbpc2sJY1YWgHTT0BaAhHQJD6mM0gr6N1fZQoaAZHQHD2SP2f029oB00XAWgIR0CQ+pfKp1ifdX2UKGgGR0BxDGsT37DVaAdNAQFoCEdAkPq8HfMwDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5f62075acf96567b28f76f8824dfb539e784453b31908d013cd8f403cb59a6b
|
3 |
+
size 146699
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f770c29f250>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f770c29f2e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f770c29f370>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f770c29f400>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f770c29f490>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f770c29f520>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f770c29f5b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f770c29f640>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f770c29f6d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f770c29f760>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f770c29f7f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f770c29f880>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f770c290580>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1684277090489421359,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqjF75ZErY/rhXfvg6DxL4rFoG9HR9NvgAAAAAAAAAAc72rvXSS+j522bG9NPC+vvbyjL0qGQy9AAAAAAAAAAAa8im99rxkumSsGrhaAyqzPsmYO0WNNTcAAIA/AACAP1qzgL2kboU/Srq/vU74Fr9ha9u9Q77kvAAAAAAAAAAAgDpmPYLwsD+ChiU+4ioAv+IWNz7awWE9AAAAAAAAAAAzNaA8rsGguk1QbToLoEO2EgZmuW0CiLkAAIA/AACAP5qr7LyWtnI9Wyh/PjPcK77Qlho+kkiLvQAAAAAAAAAAABrGPVz7N7rZysw63t/jNdkCx7lo0vC5AAAAAAAAgD9AcQo+kd4BPuPtU76w/6m+6rWDvcs7oz0AAAAAAAAAAJ32W75uLFg/n9CRvo+g/77eCZm+PQdzvQAAAAAAAAAAAKayvVqPbz/Hhgq+QAoGvxU5773aWn69AAAAAAAAAAATMoG+q50eP1iGEz4WtKC+so98vY6uDT0AAAAAAAAAAM2OWTxIw4q67hKst+u+W7JeilE5h27GNgAAgD8AAIA/symnvVy9IbwAJpY8ny9LPFSjiT0OCSy9AAAAAAAAgD/NzT2+lBbfPu6Y+T5z+X6+iv1pvT7vtD4AAAAAAAAAAEDEsb1CEYY+kujjPeMEgr6aVLm8eB/5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVFwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLVnfVI7NmMAWyUTU4BjAF0lEdAkLoLtzCDVnV9lChoBkdAc7+gRsdkrmgHTVkBaAhHQJC6FvOyE+R1fZQoaAZHQHE8VOfukUNoB00aAWgIR0CQuxrR0EHMdX2UKGgGR0BzBJBdD6WPaAdL12gIR0CQu1d7fHghdX2UKGgGR0BTK5VGTcIraAdLqGgIR0CQu2++dsi0dX2UKGgGR0By5IihWYF8aAdL8WgIR0CQvEdU83dcdX2UKGgGR0Bu0+YOUdJbaAdNAQFoCEdAkL18QAdXDHV9lChoBkdAbiTbnHNorWgHS/RoCEdAkL3rm2b5M3V9lChoBkdAck68baRISWgHTQUBaAhHQJC+Xqjafz11fZQoaAZHQHMN6lP8AJdoB0vqaAhHQJC/Mi4axX51fZQoaAZHQHJSJtix3V1oB0vyaAhHQJC/2yJKraN1fZQoaAZHQG/fPwVj7Q9oB0vhaAhHQJDATxiG34N1fZQoaAZHQHJvkvsZ5zJoB00RAWgIR0CQwHJhvze5dX2UKGgGR0BxKPIYFaB7aAdNAgFoCEdAkMCgdGRV63V9lChoBkdAcZLAJswcpGgHTQcBaAhHQJDA6uX/o7p1fZQoaAZHQHKS2mpEQXhoB0v9aAhHQJDBD+6y0KJ1fZQoaAZHQHEFlU2kzoFoB02aAWgIR0CQwqAPuogndX2UKGgGR0Bw6aNvOyE+aAdNIQFoCEdAkMMMxsVLz3V9lChoBkdAcACmxdIGyGgHTRkBaAhHQJDDG09hZyN1fZQoaAZHQHOPgOOKfnRoB00XAWgIR0CQwygk1MufdX2UKGgGR0BxOOe05U97aAdNAAFoCEdAkMNxc/t6X3V9lChoBkdAThJfOUt7KWgHS7JoCEdAkMN2oaUA1nV9lChoBkdATRKHARChOGgHS6JoCEdAkMPBB7eEZnV9lChoBkdAcSJp0OmR/2gHS/1oCEdAkMR1B+nZTXV9lChoBkdAc9jix3V092gHS/xoCEdAkMTU+otL+XV9lChoBkdAcxSZxrBTGmgHS+JoCEdAkMXYkmhM8HV9lChoBkdAXwj0/W1+iWgHTegDaAhHQJDGHLvCuU51fZQoaAZHQG/sGCAc1fpoB0v2aAhHQJDHj4QBgeB1fZQoaAZHQHCEOevpyIZoB00AAWgIR0CQx7H5JsfrdX2UKGgGR0BxqaZDzAeraAdNGwFoCEdAkMfbwrlNlHV9lChoBkdAcCYP91loUWgHTR8BaAhHQJDIQs189fV1fZQoaAZHQHBEkwWWQfZoB00nAWgIR0CQyFEUCaJAdX2UKGgGR0BvgGHSF49paAdL4GgIR0CQyPs6aLGadX2UKGgGR0BzXpet0V8DaAdNBgFoCEdAkMnvcN6PbXV9lChoBkdAcF75wfhddGgHTQoBaAhHQJDJ/xYq5LB1fZQoaAZHQHCfcYl6Z6VoB00SAWgIR0CQyqYlIEr5dX2UKGgGR0BzIvQPZqVRaAdNBgFoCEdAkMq14xDb8HV9lChoBkdAb3Kkka/ATWgHS/5oCEdAkNtcOG0u2HV9lChoBkdAcvp+6RQrMGgHTVIBaAhHQJDbluEVWS51fZQoaAZHQHKYLH2h7E5oB00yAWgIR0CQ25OMl1KXdX2UKGgGR0ByYi2JBPbgaAdL52gIR0CQ3BjnV5KOdX2UKGgGR0BxsncIqsltaAdNOgFoCEdAkN0s5jpcHHV9lChoBkdAcXnluFYdQ2gHTSABaAhHQJDd1XPqs2h1fZQoaAZHQHEEb127nPpoB0vvaAhHQJDd5qXWvr51fZQoaAZHQG+DtcGC7K9oB0vyaAhHQJDePmjj7yh1fZQoaAZHQHEJp8v24/hoB00QAWgIR0CQ34icG1QZdX2UKGgGR0ByrMdq+JxeaAdL+WgIR0CQ35yLhrFgdX2UKGgGR0Bxsgz0pVjqaAdNMwFoCEdAkN/kpuuRtHV9lChoBkdAccBpda+vhmgHS+VoCEdAkOAWS6lLvnV9lChoBkdAcwYthd+ocmgHS9doCEdAkOBjBuXNT3V9lChoBkdAcfAdOIqLCWgHTTgBaAhHQJDgiwPiDNB1fZQoaAZHQHCdqYmb9ZRoB00PAWgIR0CQ4SO/+Kj0dX2UKGgGR0BvYHmRvFWGaAdL92gIR0CQ4hOoYNy6dX2UKGgGR0BvhtF4LThHaAdNDQFoCEdAkOJ0nXumanV9lChoBkdAcB9eFcpsoGgHTQgBaAhHQJDikoXsPat1fZQoaAZHQHLQLHMlkYpoB00CAWgIR0CQ4yr9ETg3dX2UKGgGR0BwnJzFMqSYaAdNPQFoCEdAkONEJ4SpSHV9lChoBkdAcylq//NqxmgHS+hoCEdAkOPELlV94XV9lChoBkdAcYNx1PnB+GgHS9xoCEdAkOQqGgzxgHV9lChoBkdAcblszVMEimgHS+loCEdAkOSvIKc/dXV9lChoBkdAb0dGgi/wiWgHS/hoCEdAkOWZAD7qIXV9lChoBkdAcm1/QBxPwmgHS9VoCEdAkOZovnKW9nV9lChoBkdAbK5vBrN4aGgHS+xoCEdAkObadxyXD3V9lChoBkdAcIJ1jiGWU2gHTQEBaAhHQJDniDqW1MN1fZQoaAZHQG3KdqtYB/9oB00FAWgIR0CQ6PXdTHbRdX2UKGgGR0Byj0cOskpraAdNDAFoCEdAkOmHvc8DCHV9lChoBkdAb4pGmUGFBmgHTSQBaAhHQJDp2bG3nZF1fZQoaAZHQHEyFy7wrlNoB00AAWgIR0CQ6gTDwYtQdX2UKGgGR0Bx6k0bcXWOaAdL4GgIR0CQ6iOXmeUZdX2UKGgGR0ByNj4L1EmZaAdL1mgIR0CQ6kWlMyrQdX2UKGgGR0Bwqv3j+717aAdL42gIR0CQ6vFEiMYNdX2UKGgGR0Bu3lSS/0ulaAdNBwFoCEdAkO1MdT5wfnV9lChoBkdAcU4n752yLWgHTREBaAhHQJDtoGiYb851fZQoaAZHQHEXK7/XGwRoB0vUaAhHQJDvHrZ8KHB1fZQoaAZHQHDSQDaGpMpoB00WAWgIR0CQ78nuiN83dX2UKGgGR0BxQ0P07KaHaAdL2mgIR0CQ8APGQ0XQdX2UKGgGR0BycI6wMYuTaAdNPwFoCEdAkPBptrKvFHV9lChoBkdAcOeYMfA9FGgHTTgBaAhHQJDwljurp7l1fZQoaAZHQFBA1nuiN85oB0ulaAhHQJDxI46wMYx1fZQoaAZHQHEUDPa+N99oB0v1aAhHQJDxy+wkgOl1fZQoaAZHQHBLOWOZLIxoB0vfaAhHQJDy+0E5hjR1fZQoaAZHQHDqJYDDCP9oB0vsaAhHQJDzDE9+w1R1fZQoaAZHQHDpv0I1LrZoB0vqaAhHQJDza+GoJiR1fZQoaAZHQHJA2Awwj+toB01lAWgIR0CQ83fMfRu1dX2UKGgGR0Bwx3iFTNt7aAdL+2gIR0CQ85mZmZmadX2UKGgGR0ByYEAiml67aAdNEgFoCEdAkPOyJGe+VXV9lChoBkdAcKyR2r4nGGgHS/VoCEdAkPQQL3K0U3V9lChoBkdAcXaWQwK0D2gHS/doCEdAkPVh9LHuJHV9lChoBkdAcjV89wFTvWgHTQMBaAhHQJD135ckdFR1fZQoaAZHwGCSTIFNcnpoB0vqaAhHQJD2JM23rlh1fZQoaAZHQHFwHkHUtqZoB00AAWgIR0CQ93xvegtfdX2UKGgGR0BxL6brkbPyaAdL+mgIR0CQ+AMLWqcWdX2UKGgGR0BxP7T/hl19aAdNHQFoCEdAkPg9l/Yra3V9lChoBkdAccq4oJAt4GgHTSoBaAhHQJD4fFS88Ld1fZQoaAZHQHFlR1oxpL5oB00gAWgIR0CQ+LzZ6D5CdX2UKGgGR0BxAZ37k4m1aAdL/mgIR0CQ+lbVBlcydX2UKGgGR0BxdVv1lGwzaAdNEAFoCEdAkPpx3/xUenV9lChoBkdAbpc2sJY1YWgHTT0BaAhHQJD6mM0gr6N1fZQoaAZHQHD2SP2f029oB00XAWgIR0CQ+pfKp1ifdX2UKGgGR0BxDGsT37DVaAdNAQFoCEdAkPq8HfMwDnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84d9e2ebbe60226e8fde5990b8be8e496fd1c3426f7d055b80082e83341de12f
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d357478fd667f3fe0d5edb5a35a9a03fd9bea0c9c44ac3d96ee49f21b8773fe8
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (175 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.5875368560749, "std_reward": 27.397745822677674, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-16T23:31:23.908669"}
|