whisper-small-sp

This model is a fine-tuned version of openai/whisper-small on the commonvoice dataset v11 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4485
  • Wer: 20.6842

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 25000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.2671 0.13 1000 2.2108 76.2667
1.4465 0.26 2000 1.6057 67.8753
1.0997 0.39 3000 1.1928 54.2433
0.9389 0.52 4000 1.0020 47.8307
0.7881 0.65 5000 0.8933 46.0046
0.7596 0.78 6000 0.7721 38.5595
0.5678 0.91 7000 0.6903 36.2897
0.4412 1.04 8000 0.6476 32.7473
0.4239 1.17 9000 0.5973 30.8142
0.3935 1.3 10000 0.5444 29.0208
0.3307 1.43 11000 0.5024 27.0434
0.2937 1.56 12000 0.4608 24.7318
0.2471 1.69 13000 0.4259 22.8940
0.2357 1.82 14000 0.3936 21.6018
0.2292 1.95 15000 0.3776 20.8004
0.1493 2.08 16000 0.4599 24.0491
0.1708 2.21 17000 0.4370 23.3443
0.1385 2.34 18000 0.4277 22.3171
0.1288 2.47 19000 0.4050 21.0118
0.1627 2.6 20000 0.4507 23.4004
0.1675 2.73 21000 0.4346 22.8261
0.159 2.86 22000 0.4179 22.2949
0.1458 2.99 23000 0.3978 21.0810
0.0487 3.12 24000 0.4456 20.8617
0.0401 3.25 25000 0.4485 20.6842

Transcription:

from datasets import load_dataset, Audio
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration

# device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# load the model
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-small-spanish")
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-small-spanish").to(device)
forced_decoder_ids = processor.get_decoder_prompt_ids(language="es", task="transcribe")

# load the dataset
commonvoice_eval = load_dataset("mozilla-foundation/common_voice_11_0", "es", split="validation", streaming=True)
commonvoice_eval = commonvoice_eval.cast_column("audio", Audio(sampling_rate=16000))
sample = next(iter(commonvoice_eval))["audio"]

# features and generate token ids
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
predicted_ids = model.generate(input_features.to(device), forced_decoder_ids=forced_decoder_ids)

# decode
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)

print(transcription)

Evaluation:

Evaluates this model on mozilla-foundation/common_voice_11_0 test split.

from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from datasets import load_dataset, Audio
import evaluate
import torch
import re
from transformers import WhisperProcessor, WhisperForConditionalGeneration

# device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# metric
wer_metric = evaluate.load("wer")

# model
processor = WhisperProcessor.from_pretrained("clu-ling/whisper-small-spanish")
model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-small-spanish")

# dataset
dataset = load_dataset("mozilla-foundation/common_voice_11_0", "es", split="test", )#cache_dir=args.cache_dir
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))

#for debuggings: it gets some examples
#dataset = dataset.shard(num_shards=10000, index=0)
#print(dataset)
   
def normalize(batch):
  batch["gold_text"] = whisper_norm(batch['sentence'])
  return batch

def map_wer(batch):
  model.to(device)
  forced_decoder_ids = processor.get_decoder_prompt_ids(language = "es", task = "transcribe")
  inputs = processor(batch["audio"]["array"], sampling_rate=batch["audio"]["sampling_rate"], return_tensors="pt").input_features
  with torch.no_grad():
    generated_ids = model.generate(inputs=inputs.to(device), forced_decoder_ids=forced_decoder_ids)
    transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
  batch["predicted_text"] = whisper_norm(transcription)
  return batch

# process GOLD text
processed_dataset = dataset.map(normalize)
# get predictions
predicted = processed_dataset.map(map_wer)

# word error rate
wer = wer_metric.compute(references=predicted['gold_text'], predictions=predicted['predicted_text'])
wer = round(100 * wer, 2)
print("WER:", wer)

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
92
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using clu-ling/whisper-small-spanish 1