繁體中文情緒分類: 負面(0)、正面(1)
依據ckiplab/albert預訓練模型微調,訓練資料集只有8萬筆,做為課程的範例模型。
使用範例:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("clhuang/albert-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("clhuang/albert-sentiment")
## Pediction
target_names=['Negative','Positive']
max_length = 200 # 最多字數 若超出模型訓練時的字數,以模型最大字數為依據
def get_sentiment_proba(text):
# prepare our text into tokenized sequence
inputs = tokenizer(text, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
# perform inference to our model
outputs = model(**inputs)
# get output probabilities by doing softmax
probs = outputs[0].softmax(1)
response = {'Negative': round(float(probs[0, 0]), 2), 'Positive': round(float(probs[0, 1]), 2)}
# executing argmax function to get the candidate label
#return probs.argmax()
return response
get_sentiment_proba('我喜歡這本書')
get_sentiment_proba('不喜歡這款產品')
- Downloads last month
- 98
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.