Traditional Chinese news classification

繁體中文新聞分類任務,使用ckiplab/albert-base-chinese預訓練模型,資料集只有2.6萬筆,做為課程的範例模型。

from transformers import BertTokenizer, AlbertForSequenceClassification
model_path = "clhuang/albert-news-classification"
model = AlbertForSequenceClassification.from_pretrained(model_path)
tokenizer = BertTokenizer.from_pretrained("bert-base-chinese")
# Category index
news_categories=['政治','科技','運動','證卷','產經','娛樂','生活','國際','社會','文化','兩岸']
idx2cate = { i : item for i, item in enumerate(news_categories)}

# get category probability
def get_category_proba( text ):
    max_length = 250
    # prepare token sequence
    inputs = tokenizer([text], padding=True, truncation=True, max_length=max_length, return_tensors="pt")
    # perform inference
    outputs = model(**inputs)
    # get output probabilities by doing softmax
    probs = outputs[0].softmax(1)

    # executing argmax function to get the candidate label index
    label_index = probs.argmax(dim=1)[0].tolist() # convert tensor to int
    # get the label name        
    label = idx2cate[ label_index ]

    # get the label probability
    proba = round(float(probs.tolist()[0][label_index]),2)

    response = {'label': label, 'proba': proba}

    return response
   
get_category_proba('俄羅斯2月24日入侵烏克蘭至今不到3個月,芬蘭已準備好扭轉奉行了75年的軍事不結盟政策,申請加入北約。芬蘭總理馬林昨天表示,「希望我們下星期能與瑞典一起提出申請」。')
{'label': '國際', 'proba': 0.99}
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.