File size: 1,524 Bytes
871736c 2d874a8 871736c 2d874a8 871736c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
library_name: peft
base_model: saresri/pruned_opt
tags:
- generated_from_trainer
model-index:
- name: opt125m-lora-pruned-wanda-unstructured
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt125m-lora-pruned-wanda-unstructured
This model is a fine-tuned version of [saresri/pruned_opt](https://huggingface.co/saresri/pruned_opt) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
Evaluation Results (Validation): {'rouge1': 0.2448, 'rouge2': 0.0663, 'rougeL': 0.1595, 'rougeLsum': 0.1847}
Evaluation Results (Test): {'rouge1': 0.3729, 'rouge2': 0.2203, 'rougeL': 0.3078, 'rougeLsum': 0.3259}
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0 |