opt125m-lora-pruned-wanda-unstructured

This model is a fine-tuned version of saresri/pruned_opt on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Evaluation Results (Validation): {'rouge1': 0.2448, 'rouge2': 0.0663, 'rougeL': 0.1595, 'rougeLsum': 0.1847}

Evaluation Results (Test): {'rouge1': 0.3729, 'rouge2': 0.2203, 'rougeL': 0.3078, 'rougeLsum': 0.3259}

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
22
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for clee9/opt125m-lora-pruned-wanda-unstructured

Base model

saresri/pruned_opt
Adapter
(8)
this model