Frame classification for filled pauses

This model classifies individual 20ms frames of audio based on presence of filled pauses ("eee", "errm", ...).

It was trained on human-annotated Slovenian speech corpus ROG-Artur and achieves F1 of 0.95 for the positive class on te test split of the same dataset.

Evaluation

Although the output of the model is a series 0 or 1, describing their 20ms frames, the evaluation was done on event level; spans of consecutive outputs 1 were bundled together into one event. When the true and predicted events partially overlap, this is counted as a true positive.

Evaluation on ROG corpus

In evaluation, we only evaluate positive events, i.e.

              precision    recall  f1-score   support

           1      0.907     0.987     0.946      1834

Evaluation on ParlaSpeech HR and RS corpora

Evaluation on 800 human-annotated instances ParlaSpeech-HR and ParlaSpeech-RS produced the following metrics:

Performance on RS:
Classification report for human vs model on event level:
              precision    recall  f1-score   support

           1       0.95      0.99      0.97       542
Performance on HR:
Classification report for human vs model on event level:
              precision    recall  f1-score   support

           1       0.93      0.98      0.95       531

The metrics reported are on event level, which means that if true and predicted filled pauses at least partially overlap, we count them as a True Positive event.

Example use:


from transformers import AutoFeatureExtractor, Wav2Vec2BertForAudioFrameClassification
from datasets import Dataset, Audio
import torch
import numpy as np
from pathlib import Path

device = torch.device("cuda")
model_name = "classla/wav2vecbert2-filledPause"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = Wav2Vec2BertForAudioFrameClassification.from_pretrained(model_name).to(device)

ds = Dataset.from_dict(
    {
        "audio": [
            "/cache/peterr/mezzanine_resources/filled_pauses/data/dev/Iriss-J-Gvecg-P500001-avd_2082.293_2112.194.wav"
        ],
    }
).cast_column("audio", Audio(sampling_rate=16_000, mono=True))


def frames_to_intervals(
    frames: list[int], drop_short=True, drop_initial=True, short_cutoff_s=0.08
) -> list[tuple[float]]:
    """Transforms a list of ones or zeros, corresponding to annotations on frame
    levels, to a list of intervals ([start second, end second]).

    Allows for additional filtering on duration (false positives are often short)
    and start times (false positives starting at 0.0 are often an artifact of
    poor segmentation).

    :param list[int] frames: Input frame labels
    :param bool drop_short: Drop everything shorter than short_cutoff_s, defaults to True
    :param bool drop_initial: Drop predictions starting at 0.0, defaults to True
    :param float short_cutoff_s: Duration in seconds of shortest allowable prediction, defaults to 0.08
    :return list[tuple[float]]: List of intervals [start_s, end_s]
    """
    from itertools import pairwise
    import pandas as pd

    results = []
    ndf = pd.DataFrame(
        data={
            "time_s": [0.020 * i for i in range(len(frames))],
            "frames": frames,
        }
    )
    ndf = ndf.dropna()
    indices_of_change = ndf.frames.diff()[ndf.frames.diff() != 0].index.values
    for si, ei in pairwise(indices_of_change):
        if ndf.loc[si : ei - 1, "frames"].mode()[0] == 0:
            pass
        else:
            results.append(
                (
                    round(ndf.loc[si, "time_s"], 3),
                    round(ndf.loc[ei - 1, "time_s"], 3),
                )
            )
    if drop_short and (len(results) > 0):
        results = [i for i in results if (i[1] - i[0] >= short_cutoff_s)]
    if drop_initial and (len(results) > 0):
        results = [i for i in results if i[0] != 0.0]
    return results


def evaluator(chunks):
    sampling_rate = chunks["audio"][0]["sampling_rate"]
    with torch.no_grad():
        inputs = feature_extractor(
            [i["array"] for i in chunks["audio"]],
            return_tensors="pt",
            sampling_rate=sampling_rate,
        ).to(device)
        logits = model(**inputs).logits
    y_pred = np.array(logits.cpu()).argmax(axis=-1)
    intervals = [frames_to_intervals(i) for i in y_pred]
    return {"y_pred": y_pred.tolist(), "intervals": intervals}


ds = ds.map(evaluator, batched=True)
print(ds["y_pred"][0])
# Prints a list of 20ms frames: [0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0....]
# with 0 indicating no filled pause detected in that frame

print(ds["intervals"][0])
# Prints the identified intervals as a list of [start_s, ends_s]:
# [[0.08, 0.28 ], ...]

Citation

Coming soon.

Downloads last month
1,804
Safetensors
Model size
580M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for classla/wav2vecbert2-filledPause

Finetuned
(252)
this model