language: pl
license: mit
tags:
- ner
datasets:
- clarin-pl/kpwr-ner
metrics:
- f1
- accuracy
- precision
- recall
widget:
- text: Nazywam się Jan Kowalski i mieszkam we Wrocławiu.
example_title: Example
FastPDN
FastPolDeepNer is a model designed for easy use, training and configuration. The forerunner of this project is PolDeepNer2. The model implements a pipeline consisting of data processing and training using: hydra, pytorch, pytorch-lightning, transformers.
How to use
Here is how to use this model to get the Named Entities in text:
from transformers import pipeline
ner = pipeline('ner', model='clarin-pl/FastPDN')
text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
ner_results = ner(text)
for output in ner_results:
print(output)
{'entity': 'B-nam_liv_person', 'score': 0.99957544, 'index': 4, 'word': 'Jan</w>', 'start': 12, 'end': 15}
{'entity': 'I-nam_liv_person', 'score': 0.99963534, 'index': 5, 'word': 'Kowalski</w>', 'start': 16, 'end': 24}
{'entity': 'B-nam_loc_gpe_city', 'score': 0.998931, 'index': 9, 'word': 'Wrocławiu</w>', 'start': 39, 'end': 48}
Here is how to use this model to get the logits for every token in text:
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("clarin-pl/FastPDN")
model = AutoModelForTokenClassification.from_pretrained("clarin-pl/FastPDN")
text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
Developing
Model pipeline consists of 2 steps:
- Data processing
- Training
- (optional) Share model to Hugginface Hub
Config
This project use hydra configuration. Every configuration used in this module
is placed in .yaml
files in config
directory.
This directory has structure:
- prepare_data.yaml - main configuration for the data processing stage
- train.yaml - main configuration for the training stage
- share_mode.yaml - main configuraion for sharing model to Huggingface Hub
- callbacks - contains callbacks for pytorch_lightning trainer
- default.yaml
- early_stopping.yaml
- learning_rate_monitor.yaml
- model_checkpoint.yaml
- rich_progress_bar.yaml
- datamodule - contains pytorch_lightning datamodule configuration
- pdn.yaml
- experiment - contains all the configurations of executed experiments
- hydra - hydra configuration files
- loggers - contains loggers for trainer
- csv.yaml
- many_loggers.yaml
- tensorboards.yaml
- wandb.yaml
- model - contains model architecture hyperparameters
- default.yaml
- distiluse.yaml
- custom_classification_head.yaml
- multilabel.yaml
- paths - contains paths for IO
- prepare_data - contains configuration for data processing stage
- cen_n82
- default
- trainer - contains trainer configurations
- default.yaml
- cpu.yaml
- gpu.yaml
Training
- Install requirements with poetry
poetry install
- Use poetry environment in next steps
poetry shell
or
poetry run <command>
- Prepare dataset
python3 src/prepare_data.py experiment=<experiment-name>
- Train model
CUDA_VISIBLE_DEVICES=<device-id> python3 src/train.py experiment=<experiment-name>
- (optional) Share model to Huggingface Hub
python3 src/share_model.py
Evaluation
Runs trained on cen_n82
and kpwr_n82
:
name | test/f1 | test/pdn2_f1 | test/acc | test/precision | test/recall |
---|---|---|---|---|---|
distiluse | 0.53 | 0.61 | 0.95 | 0.55 | 0.54 |
herbert | 0.68 | 0.78 | 0.97 | 0.7 | 0.69 |
Runs trained and validated only on cen_n82
:
name | test/f1 | test/pdn2_f1 | test/acc | test/precision | test/recall |
---|---|---|---|---|---|
distiluse_cen | 0.58 | 0.7 | 0.96 | 0.6 | 0.59 |
herbert_cen_bs32 | 0.71 | 0.84 | 0.97 | 0.72 | 0.72 |
herbert_cen | 0.72 | 0.84 | 0.97 | 0.73 | 0.73 |
Detailed results for herbert
:
tag | f1 | precision | recall | support |
---|---|---|---|---|
nam_eve_human_cultural | 0.65 | 0.53 | 0.83 | 88 |
nam_pro_title_document | 0.87 | 0.82 | 0.92 | 50 |
nam_loc_gpe_country | 0.82 | 0.76 | 0.9 | 258 |
nam_oth_www | 0.71 | 0.85 | 0.61 | 18 |
nam_liv_person | 0.94 | 0.89 | 1.0 | 8 |
nam_adj_country | 0.44 | 0.42 | 0.46 | 94 |
nam_org_institution | 0.15 | 0.16 | 0.14 | 22 |
nam_loc_land_continent | 0.5 | 0.57 | 0.44 | 9 |
nam_org_organization | 0.64 | 0.59 | 0.71 | 58 |
nam_liv_god | 0.13 | 0.09 | 0.25 | 4 |
nam_loc_gpe_city | 0.56 | 0.51 | 0.62 | 87 |
nam_org_company | 0.0 | 0.0 | 0.0 | 4 |
nam_oth_currency | 0.71 | 0.86 | 0.6 | 10 |
nam_org_group_team | 0.87 | 0.79 | 0.96 | 106 |
nam_fac_road | 0.67 | 0.67 | 0.67 | 6 |
nam_fac_park | 0.39 | 0.7 | 0.27 | 26 |
nam_pro_title_tv | 0.17 | 1.0 | 0.09 | 11 |
nam_loc_gpe_admin3 | 0.91 | 0.97 | 0.86 | 35 |
nam_adj | 0.47 | 0.5 | 0.44 | 9 |
nam_loc_gpe_admin1 | 0.92 | 0.91 | 0.93 | 1146 |
nam_oth_tech | 0.0 | 0.0 | 0.0 | 4 |
nam_pro_brand | 0.93 | 0.88 | 1.0 | 14 |
nam_fac_goe | 0.1 | 0.07 | 0.14 | 7 |
nam_eve_human | 0.76 | 0.73 | 0.78 | 74 |
nam_pro_vehicle | 0.81 | 0.79 | 0.83 | 36 |
nam_oth | 0.8 | 0.82 | 0.79 | 47 |
nam_org_nation | 0.85 | 0.87 | 0.84 | 516 |
nam_pro_media_periodic | 0.95 | 0.94 | 0.96 | 603 |
nam_adj_city | 0.43 | 0.39 | 0.47 | 19 |
nam_oth_position | 0.56 | 0.54 | 0.58 | 26 |
nam_pro_title | 0.63 | 0.68 | 0.59 | 22 |
nam_pro_media_tv | 0.29 | 0.2 | 0.5 | 2 |
nam_fac_system | 0.29 | 0.2 | 0.5 | 2 |
nam_eve_human_holiday | 1.0 | 1.0 | 1.0 | 2 |
nam_loc_gpe_admin2 | 0.83 | 0.91 | 0.76 | 51 |
nam_adj_person | 0.86 | 0.75 | 1.0 | 3 |
nam_pro_software | 0.67 | 1.0 | 0.5 | 2 |
nam_num_house | 0.88 | 0.9 | 0.86 | 43 |
nam_pro_media_web | 0.32 | 0.43 | 0.25 | 12 |
nam_org_group | 0.5 | 0.45 | 0.56 | 9 |
nam_loc_hydronym_river | 0.67 | 0.61 | 0.74 | 19 |
nam_liv_animal | 0.88 | 0.79 | 1.0 | 11 |
nam_pro_award | 0.8 | 1.0 | 0.67 | 3 |
nam_pro | 0.82 | 0.8 | 0.83 | 243 |
nam_org_political_party | 0.34 | 0.38 | 0.32 | 19 |
nam_eve_human_sport | 0.65 | 0.73 | 0.58 | 19 |
nam_pro_title_book | 0.94 | 0.93 | 0.95 | 149 |
nam_org_group_band | 0.74 | 0.73 | 0.75 | 359 |
nam_oth_data_format | 0.82 | 0.88 | 0.76 | 88 |
nam_loc_astronomical | 0.75 | 0.72 | 0.79 | 341 |
nam_loc_hydronym_sea | 0.4 | 1.0 | 0.25 | 4 |
nam_loc_land_mountain | 0.95 | 0.96 | 0.95 | 74 |
nam_loc_land_island | 0.55 | 0.52 | 0.59 | 46 |
nam_num_phone | 0.91 | 0.91 | 0.91 | 137 |
nam_pro_model_car | 0.56 | 0.64 | 0.5 | 14 |
nam_loc_land_region | 0.52 | 0.5 | 0.55 | 11 |
nam_liv_habitant | 0.38 | 0.29 | 0.54 | 13 |
nam_eve | 0.47 | 0.38 | 0.61 | 85 |
nam_loc_historical_region | 0.44 | 0.8 | 0.31 | 26 |
nam_fac_bridge | 0.33 | 0.26 | 0.46 | 24 |
nam_oth_license | 0.65 | 0.74 | 0.58 | 24 |
nam_pro_media | 0.33 | 0.32 | 0.35 | 52 |
nam_loc_gpe_subdivision | 0.0 | 0.0 | 0.0 | 9 |
nam_loc_gpe_district | 0.84 | 0.86 | 0.81 | 108 |
nam_loc | 0.67 | 0.6 | 0.75 | 4 |
nam_pro_software_game | 0.75 | 0.61 | 0.95 | 20 |
nam_pro_title_album | 0.6 | 0.56 | 0.65 | 52 |
nam_loc_country_region | 0.81 | 0.74 | 0.88 | 26 |
nam_pro_title_song | 0.52 | 0.6 | 0.45 | 111 |
nam_org_organization_sub | 0.0 | 0.0 | 0.0 | 3 |
nam_loc_land | 0.4 | 0.31 | 0.56 | 36 |
nam_fac_square | 0.5 | 0.6 | 0.43 | 7 |
nam_loc_hydronym | 0.67 | 0.56 | 0.82 | 11 |
nam_loc_hydronym_lake | 0.51 | 0.44 | 0.61 | 96 |
nam_fac_goe_stop | 0.35 | 0.3 | 0.43 | 7 |
nam_pro_media_radio | 0.0 | 0.0 | 0.0 | 2 |
nam_pro_title_treaty | 0.3 | 0.56 | 0.21 | 24 |
nam_loc_hydronym_ocean | 0.35 | 0.38 | 0.33 | 33 |
To see all the experiments and graphs head over to wandb - https://wandb.ai/clarin-pl/FastPDN
Authors
- Grupa Wieszcze CLARIN-PL
Contact
- Norbert Ropiak ([email protected])