Model generates definitions of the word given context.

How to use model:

from transformers import pipeline
generator = pipeline("text2text-generation", model = 'clarin-knext/wnet-def-plt5large', use_auth_token=True)
generator("komik: Poszed艂em dzisiaj na kabaret i by艂 tam 艣mieszny komik.")

[{'generated_text': 'cz艂owiek , kt贸ry lubi 偶artowa膰 i roz艣miesza膰 innych . '}]

model = T5ForConditionalGeneration.from_pretrained("clarin-knext/wnet-def-plt5large", use_auth_token=True)
tokenizer = T5TokenizerFast.from_pretrained("clarin-knext/wnet-def-plt5large", use_auth_token=True)

input_ids = tokenizer("samoch贸d: po drodze jedzie samoch贸d", return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
16
Safetensors
Model size
820M params
Tensor type
F32
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.