|
---
|
|
license: cc-by-nc-sa-4.0
|
|
base_model: microsoft/layoutlmv2-base-uncased
|
|
tags:
|
|
- generated_from_trainer
|
|
model-index:
|
|
- name: test
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# test
|
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 5.0749
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 4
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 20
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss |
|
|
|:-------------:|:-------:|:----:|:---------------:|
|
|
| 5.3171 | 0.2212 | 50 | 4.6375 |
|
|
| 4.4008 | 0.4425 | 100 | 4.0771 |
|
|
| 4.0457 | 0.6637 | 150 | 3.8669 |
|
|
| 3.8671 | 0.8850 | 200 | 3.6725 |
|
|
| 3.4191 | 1.1062 | 250 | 3.7154 |
|
|
| 3.181 | 1.3274 | 300 | 3.2224 |
|
|
| 3.1471 | 1.5487 | 350 | 3.1611 |
|
|
| 2.8849 | 1.7699 | 400 | 2.9149 |
|
|
| 2.6279 | 1.9912 | 450 | 2.7628 |
|
|
| 2.1833 | 2.2124 | 500 | 2.6845 |
|
|
| 1.9236 | 2.4336 | 550 | 2.5157 |
|
|
| 1.9385 | 2.6549 | 600 | 2.3477 |
|
|
| 1.8375 | 2.8761 | 650 | 2.5764 |
|
|
| 1.5994 | 3.0973 | 700 | 2.5796 |
|
|
| 1.4455 | 3.3186 | 750 | 2.4148 |
|
|
| 1.4008 | 3.5398 | 800 | 2.3462 |
|
|
| 1.4988 | 3.7611 | 850 | 2.0116 |
|
|
| 1.3286 | 3.9823 | 900 | 2.4790 |
|
|
| 1.0156 | 4.2035 | 950 | 2.6341 |
|
|
| 1.0546 | 4.4248 | 1000 | 2.9160 |
|
|
| 0.9135 | 4.6460 | 1050 | 3.3701 |
|
|
| 1.0544 | 4.8673 | 1100 | 2.3959 |
|
|
| 0.8423 | 5.0885 | 1150 | 2.8365 |
|
|
| 0.8101 | 5.3097 | 1200 | 2.7091 |
|
|
| 0.6854 | 5.5310 | 1250 | 3.1581 |
|
|
| 0.7012 | 5.7522 | 1300 | 3.2229 |
|
|
| 0.7611 | 5.9735 | 1350 | 2.8766 |
|
|
| 0.5144 | 6.1947 | 1400 | 3.1662 |
|
|
| 0.6242 | 6.4159 | 1450 | 3.4253 |
|
|
| 0.619 | 6.6372 | 1500 | 3.4169 |
|
|
| 0.4874 | 6.8584 | 1550 | 3.6466 |
|
|
| 0.4547 | 7.0796 | 1600 | 3.2960 |
|
|
| 0.4377 | 7.3009 | 1650 | 3.6329 |
|
|
| 0.3454 | 7.5221 | 1700 | 3.7038 |
|
|
| 0.6575 | 7.7434 | 1750 | 3.6313 |
|
|
| 0.3357 | 7.9646 | 1800 | 3.9394 |
|
|
| 0.2812 | 8.1858 | 1850 | 3.7570 |
|
|
| 0.278 | 8.4071 | 1900 | 3.9145 |
|
|
| 0.3365 | 8.6283 | 1950 | 3.7289 |
|
|
| 0.4358 | 8.8496 | 2000 | 3.3832 |
|
|
| 0.2653 | 9.0708 | 2050 | 3.6875 |
|
|
| 0.2302 | 9.2920 | 2100 | 3.8430 |
|
|
| 0.1409 | 9.5133 | 2150 | 4.0128 |
|
|
| 0.3695 | 9.7345 | 2200 | 3.5634 |
|
|
| 0.2317 | 9.9558 | 2250 | 4.5010 |
|
|
| 0.3039 | 10.1770 | 2300 | 4.3949 |
|
|
| 0.2396 | 10.3982 | 2350 | 4.1234 |
|
|
| 0.2696 | 10.6195 | 2400 | 3.9876 |
|
|
| 0.2627 | 10.8407 | 2450 | 4.0118 |
|
|
| 0.2415 | 11.0619 | 2500 | 4.0133 |
|
|
| 0.062 | 11.2832 | 2550 | 4.1836 |
|
|
| 0.2313 | 11.5044 | 2600 | 4.2826 |
|
|
| 0.1002 | 11.7257 | 2650 | 4.4694 |
|
|
| 0.0836 | 11.9469 | 2700 | 4.6534 |
|
|
| 0.1351 | 12.1681 | 2750 | 4.3303 |
|
|
| 0.0415 | 12.3894 | 2800 | 4.4617 |
|
|
| 0.1199 | 12.6106 | 2850 | 4.5453 |
|
|
| 0.106 | 12.8319 | 2900 | 4.5849 |
|
|
| 0.1003 | 13.0531 | 2950 | 4.7043 |
|
|
| 0.0116 | 13.2743 | 3000 | 4.8034 |
|
|
| 0.0372 | 13.4956 | 3050 | 4.8729 |
|
|
| 0.0587 | 13.7168 | 3100 | 4.7357 |
|
|
| 0.1131 | 13.9381 | 3150 | 4.2960 |
|
|
| 0.0582 | 14.1593 | 3200 | 4.2865 |
|
|
| 0.0746 | 14.3805 | 3250 | 4.5552 |
|
|
| 0.1061 | 14.6018 | 3300 | 4.5042 |
|
|
| 0.108 | 14.8230 | 3350 | 4.5374 |
|
|
| 0.0118 | 15.0442 | 3400 | 4.7829 |
|
|
| 0.0579 | 15.2655 | 3450 | 4.8695 |
|
|
| 0.0358 | 15.4867 | 3500 | 4.9450 |
|
|
| 0.0772 | 15.7080 | 3550 | 4.9850 |
|
|
| 0.0838 | 15.9292 | 3600 | 4.9220 |
|
|
| 0.0478 | 16.1504 | 3650 | 4.8603 |
|
|
| 0.1258 | 16.3717 | 3700 | 5.0143 |
|
|
| 0.0192 | 16.5929 | 3750 | 5.0035 |
|
|
| 0.0856 | 16.8142 | 3800 | 5.0450 |
|
|
| 0.0079 | 17.0354 | 3850 | 5.0792 |
|
|
| 0.0075 | 17.2566 | 3900 | 5.0261 |
|
|
| 0.0647 | 17.4779 | 3950 | 5.0301 |
|
|
| 0.0296 | 17.6991 | 4000 | 4.9634 |
|
|
| 0.0044 | 17.9204 | 4050 | 4.9916 |
|
|
| 0.0117 | 18.1416 | 4100 | 4.9851 |
|
|
| 0.0047 | 18.3628 | 4150 | 4.9993 |
|
|
| 0.0034 | 18.5841 | 4200 | 5.0673 |
|
|
| 0.0466 | 18.8053 | 4250 | 5.0642 |
|
|
| 0.0362 | 19.0265 | 4300 | 5.0544 |
|
|
| 0.0145 | 19.2478 | 4350 | 5.0634 |
|
|
| 0.0125 | 19.4690 | 4400 | 5.0688 |
|
|
| 0.0063 | 19.6903 | 4450 | 5.0728 |
|
|
| 0.0231 | 19.9115 | 4500 | 5.0749 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.43.3
|
|
- Pytorch 2.4.0+cpu
|
|
- Datasets 2.20.0
|
|
- Tokenizers 0.19.1
|
|
|