dense_reward_trainer_final_opt__NumTrainEpochs2_SaveStrategiesepoch_reward_modeling_anthropic_hh
This model is a fine-tuned version of facebook/opt-1.3b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6907
- Accuracy: 0.6825
- Train Rewards/chosen: -1.8222
- Train Rewards/rejected: -3.6005
- Train Rewards/accuracies: 0.8138
- Train Rewards/margins: 1.7783
- Train Nll Loss: 2.4635
- Train Logit Total Loss: 0.4241
- Train Logit Loss: 0.4035
- Rewards/chosen: -2.0106
- Rewards/rejected: -3.0639
- Rewards/accuracies: 0.6657
- Rewards/margins: 1.0533
- Nll Loss: 2.4906
- Logit Total Loss: 0.6892
- Logit Loss: 0.6710
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Nll Loss | Logit Total Loss | Logit Loss |
---|---|---|---|---|---|---|---|---|---|---|---|
0.7169 | 0.11 | 100 | 0.6921 | 0.5959 | -1.7367 | -1.8694 | 0.5855 | 0.1326 | 3.0057 | 0.6899 | 0.6665 |
0.7082 | 0.23 | 200 | 0.6978 | 0.5938 | -3.3995 | -3.5818 | 0.5802 | 0.1823 | 3.2073 | 0.6959 | 0.6706 |
0.6744 | 0.34 | 300 | 0.6681 | 0.6062 | -2.3751 | -2.7036 | 0.5956 | 0.3285 | 2.7061 | 0.6656 | 0.6450 |
0.6154 | 0.46 | 400 | 0.6490 | 0.6433 | -1.5136 | -1.9306 | 0.6310 | 0.4171 | 2.8065 | 0.6474 | 0.6256 |
0.6405 | 0.57 | 500 | 0.6573 | 0.6351 | -1.4041 | -1.8257 | 0.6226 | 0.4216 | 2.6995 | 0.6577 | 0.6371 |
0.6284 | 0.69 | 600 | 0.6448 | 0.6557 | -2.3215 | -2.7092 | 0.6440 | 0.3877 | 2.6968 | 0.6433 | 0.6225 |
0.6399 | 0.8 | 700 | 0.6454 | 0.6227 | -2.0755 | -2.4642 | 0.6125 | 0.3887 | 2.8089 | 0.6435 | 0.6217 |
0.669 | 0.91 | 800 | 0.6385 | 0.6474 | -1.7053 | -2.1240 | 0.6379 | 0.4187 | 2.6687 | 0.6350 | 0.6145 |
0.4788 | 1.03 | 900 | 0.6636 | 0.6577 | -2.1522 | -2.8529 | 0.6435 | 0.7007 | 2.5723 | 0.6620 | 0.6427 |
0.4529 | 1.14 | 1000 | 0.6938 | 0.6577 | -1.1456 | -2.0167 | 0.6488 | 0.8712 | 2.5628 | 0.6897 | 0.6708 |
0.4378 | 1.26 | 1100 | 0.7319 | 0.6536 | -1.4771 | -2.4829 | 0.6427 | 1.0058 | 2.5495 | 0.7282 | 0.7098 |
0.4496 | 1.37 | 1200 | 0.7034 | 0.6660 | -2.6046 | -3.5817 | 0.6524 | 0.9771 | 2.5483 | 0.7006 | 0.6819 |
0.3539 | 1.49 | 1300 | 0.7023 | 0.6598 | -2.2279 | -3.2122 | 0.6516 | 0.9842 | 2.5144 | 0.6963 | 0.6780 |
0.5494 | 1.6 | 1400 | 0.6784 | 0.6536 | -2.3300 | -3.3018 | 0.6435 | 0.9718 | 2.4946 | 0.6749 | 0.6565 |
0.4075 | 1.71 | 1500 | 0.6935 | 0.6948 | -0.9575 | -2.0411 | 0.6843 | 1.0836 | 2.4900 | 0.6884 | 0.6702 |
0.4789 | 1.83 | 1600 | 0.6941 | 0.6598 | -2.1270 | -3.1756 | 0.6496 | 1.0487 | 2.5026 | 0.6924 | 0.6741 |
0.4093 | 1.94 | 1700 | 0.6907 | 0.6825 | -2.0106 | -3.0639 | 0.6657 | 1.0533 | 2.4906 | 0.6892 | 0.6710 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.15.2
- Downloads last month
- 6
Model tree for cj453/dense_reward_trainer_final_opt__NumTrainEpochs2_SaveStrategiesepoch_reward_modeling_anthropic_hh
Base model
facebook/opt-1.3b