banner

Overview

This model was fine-tuned from ModernBERT-large on the GoEmotions dataset for multi-label classification. It predicts emotional states in text, with a total of 28 possible labels. Each input text can have one or more associated labels, reflecting the multi-label nature of the task.

Try it out here.


Model Details

  • Base Model: ModernBERT-large
  • Fine-Tuning Dataset: GoEmotions
  • Number of Labels: 28
  • Problem Type: Multi-label classification
  • Language: English
  • License: MIT
  • Fine-Tuning Framework: Hugging Face Transformers

Example Usage

Here’s how to use the model with Hugging Face Transformers:

from transformers import pipeline
import torch

# Load the model
classifier = pipeline(
    "text-classification", 
    model="cirimus/modernbert-large-go-emotions",
    return_all_scores=True
)

text = "I am so happy and excited about this opportunity!"
predictions = classifier(text)

# Print top 5 detected emotions
sorted_preds = sorted(predictions[0], key=lambda x: x['score'], reverse=True)
top_5 = sorted_preds[:5]

print("\nTop 5 emotions detected:")
for pred in top_5:
    print(f"{pred['label']}: {pred['score']:.3f}")

# Example output:
# Top 5 emotions detected:
# joy: 0.784
# excitement: 0.735
# admiration: 0.013
# gratitude: 0.003
# amusement: 0.003

How the Model Was Created

The model was fine-tuned for 3 epochs using the following hyperparameters:

  • Learning Rate: 2e-5
  • Batch Size: 16
  • Weight Decay: 0.01
  • Optimizer: AdamW
  • Evaluation Metrics: Precision, Recall, F1 Score (weighted), Accuracy

Dataset

The GoEmotions dataset is a multi-label emotion classification dataset derived from Reddit comments. It contains 58,000 examples with 28 emotion labels (e.g., admiration, amusement, anger, etc.), and it is annotated for multi-label classification.


Evaluation Results

The model was evaluated on the test split of the GoEmotions dataset, using a threshold of 0.5 for binarizing predictions. The overall metrics were:

Standard Results:

Using the default threshold of 0.5.

Macro Averages (test)

  • Accuracy: 0.971
  • Precision: 0.611
  • Recall: 0.410
  • F1: 0.472
  • MCC: 0.475

Per-Label Results (test)

Label Accuracy Precision Recall F1 MCC Support Threshold
admiration 0.946 0.739 0.653 0.693 0.666 504 0.5
amusement 0.982 0.817 0.814 0.816 0.807 264 0.5
anger 0.968 0.671 0.237 0.351 0.387 198 0.5
annoyance 0.938 0.449 0.191 0.268 0.265 320 0.5
approval 0.940 0.564 0.302 0.393 0.384 351 0.5
caring 0.977 0.581 0.319 0.411 0.420 135 0.5
confusion 0.973 0.553 0.307 0.395 0.400 153 0.5
curiosity 0.952 0.551 0.454 0.498 0.476 284 0.5
desire 0.988 0.702 0.398 0.508 0.523 83 0.5
disappointment 0.972 0.500 0.152 0.234 0.265 151 0.5
disapproval 0.951 0.503 0.315 0.387 0.374 267 0.5
disgust 0.981 0.685 0.301 0.418 0.446 123 0.5
embarrassment 0.995 0.800 0.324 0.462 0.507 37 0.5
excitement 0.983 0.649 0.233 0.343 0.382 103 0.5
fear 0.991 0.738 0.577 0.647 0.648 78 0.5
gratitude 0.990 0.955 0.895 0.924 0.919 352 0.5
grief 0.999 0.000 0.000 0.000 0.000 6 0.5
joy 0.980 0.658 0.646 0.652 0.642 161 0.5
love 0.983 0.795 0.815 0.805 0.796 238 0.5
nervousness 0.996 0.556 0.435 0.488 0.490 23 0.5
optimism 0.973 0.702 0.392 0.503 0.513 186 0.5
pride 0.998 0.800 0.250 0.381 0.446 16 0.5
realization 0.972 0.405 0.117 0.182 0.207 145 0.5
relief 0.998 0.000 0.000 0.000 0.000 11 0.5
remorse 0.992 0.566 0.839 0.676 0.686 56 0.5
sadness 0.980 0.764 0.436 0.555 0.568 156 0.5
surprise 0.980 0.692 0.447 0.543 0.547 141 0.5
neutral 0.796 0.716 0.628 0.669 0.525 1787 0.5

Optimal Results:

Using the best threshold for each label based on the training set (tuned on F1).

Macro Averages (test)

  • Accuracy: 0.968
  • Precision: 0.591
  • Recall: 0.528
  • F1: 0.550
  • MCC: 0.536

Per-Label Results (test)

Label Accuracy Precision Recall F1 MCC Support Threshold
admiration 0.947 0.722 0.702 0.712 0.683 504 0.40
amusement 0.983 0.812 0.848 0.830 0.821 264 0.45
anger 0.966 0.548 0.460 0.500 0.485 198 0.25
annoyance 0.926 0.378 0.403 0.390 0.351 320 0.30
approval 0.928 0.445 0.470 0.457 0.419 351 0.30
caring 0.975 0.496 0.430 0.460 0.449 135 0.35
confusion 0.966 0.417 0.510 0.459 0.444 153 0.30
curiosity 0.950 0.522 0.588 0.553 0.528 284 0.40
desire 0.988 0.673 0.422 0.519 0.527 83 0.40
disappointment 0.964 0.338 0.305 0.321 0.303 151 0.30
disapproval 0.948 0.468 0.416 0.440 0.414 267 0.35
disgust 0.978 0.529 0.447 0.485 0.475 123 0.25
embarrassment 0.994 0.650 0.351 0.456 0.475 37 0.35
excitement 0.978 0.419 0.427 0.423 0.412 103 0.25
fear 0.990 0.662 0.628 0.645 0.640 78 0.40
gratitude 0.990 0.955 0.895 0.924 0.919 352 0.50
grief 0.999 0.750 0.500 0.600 0.612 6 0.35
joy 0.980 0.660 0.640 0.650 0.639 161 0.50
love 0.982 0.774 0.836 0.804 0.795 238 0.45
nervousness 0.995 0.435 0.435 0.435 0.432 23 0.45
optimism 0.972 0.597 0.565 0.580 0.566 186 0.25
pride 0.998 0.667 0.375 0.480 0.499 16 0.15
realization 0.962 0.273 0.248 0.260 0.241 145 0.25
relief 0.999 0.800 0.364 0.500 0.539 11 0.25
remorse 0.993 0.641 0.732 0.683 0.681 56 0.65
sadness 0.978 0.646 0.538 0.587 0.579 156 0.30
surprise 0.979 0.603 0.518 0.557 0.548 141 0.40
neutral 0.791 0.669 0.722 0.695 0.537 1787 0.40

Intended Use

The model is designed for emotion classification in English-language text, particularly in domains such as:

  • Social media sentiment analysis
  • Customer feedback evaluation
  • Behavioral or psychological research

Limitations and Biases

  • Data Bias: The dataset is based on Reddit comments, which may not generalize well to other domains or cultural contexts.
  • Underrepresented Classes: Certain labels like "grief" and "relief" have very few examples, leading to lower performance for those classes.
  • Ambiguity: Some training data contain annotation inconsistencies or ambiguities that may impact predictions.


Environmental Impact

  • Hardware Used: NVIDIA RTX4090
  • Training Time: <1 hour
  • Carbon Emissions: ~0.06 kg CO2 (calculated via ML CO2 Impact Calculator).

Citation

If you use this model, please cite it as follows:

@inproceedings{JdFE2025c,
  title = {Emotion Classification with ModernBERT},
  author = {Enric Junqu\'e de Fortuny},
  year = {2025},
  howpublished = {\url{https://huggingface.co/cirimus/modernbert-large-go-emotions}},
}
Downloads last month
1,042
Safetensors
Model size
396M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cirimus/modernbert-large-go-emotions

Finetuned
(46)
this model

Dataset used to train cirimus/modernbert-large-go-emotions

Space using cirimus/modernbert-large-go-emotions 1