|
--- |
|
license: mit |
|
--- |
|
# Chuxin-1.6B-Base |
|
<br> |
|
|
|
## 介绍 (Introduction) |
|
|
|
**Chuxin-1.6B-Base**是16亿参数规模的模型。Chuxin-1.6B完全基于开源数据构建,在经过超大规模数据训练后,Chuxin-1.6B在各类下游任务上具有非常强的竞争力。 |
|
|
|
**Chuxin-1.6B-1M**是基于Chuxin-1.6B-base模型在1M窗口下训练后的结果,大海捞针实验显示其具有非常强的上下文检索能力。 |
|
|
|
|
|
如果您想了解更多关于Chuxin-1.6B开源模型的细节,我们建议您参阅我们的[技术报告](https://arxiv.org/pdf/2405.04828) |
|
|
|
**Chuxin-1.6B-Base** is a model with 1.6 billion parameters. Chuxin-1.6B is built entirely on open-source data. After being trained with large-scale data, Chuxin has very competitive capabilities in various downstream tasks. |
|
|
|
**Chuxin-1.6B-1M** is the result of training the Chuxin-1.6B-base model with a 1M windows. Experiments such as searching for a needle in a haystack demonstrate its strong contextual retrieval abilities. |
|
|
|
If you would like to learn more about the Chuxin-1.6B open-source model, we suggest you refer to our [technical report](https://arxiv.org/pdf/2405.04828). |
|
<br> |
|
|
|
## 快速使用(Quickstart) |
|
|
|
您可以通过以下代码轻松调用: |
|
|
|
You can easily call the model with the following code: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("chuxin-llm/Chuxin-1.6B-Base", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("chuxin-llm/Chuxin-1.6B-Base", device_map="auto", trust_remote_code=True, bf16=True).eval() |
|
inputs = tokenizer('蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是', return_tensors='pt') |
|
inputs = inputs.to(model.device) |
|
pred = model.generate(**inputs, max_new_tokens=15, do_sample=False) |
|
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) |
|
# 蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是亚的斯亚贝巴(Addis Ababa)... |
|
``` |
|
|
|
## 评测效果(Evaluation) |
|
|
|
### (常识推理和阅读理解) Common Sense Reasoning and Reading Comprehension tasks |
|
|
|
| Model | size | ARC-c |ARC-e |Boolq |Copa |Hellaswag |OpenbookQA |Piqa |Sciq |Winogrande |Avg| |
|
|:--------------|:----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:| |
|
| Gemma | 2B | 48.98 | 78.45 | 69.51 | 84 | 71.73 | 39.8 | 78.02 | 94.3 | 65.51 | 70.03 | |
|
| H2O-Danube† | 1.8B | 35.84 | 62.29 | 65.81 | - | 68.20 | 37.6 | 76.93 | - | 61.96 | - | |
|
| Qwen1.5 | 1.8B | 37.03 | 67.51 | 66.64 | 78 | 61.60 | 34.40 | 73.99 | 93 | 61.56 | 63.74 | |
|
| StableLM 2 | 1.6B | 43.52 |69.44 | 75.5 | 84 | 70.3 | 39.6 | 76.82 | 96.1 | 64.17 | 68.82 | |
|
| OpenLlama† | 3B | 34 |69| 68| -| 49| 40| 75| -| 62 |-| |
|
| CT-LLM | 2B | 34.81 | 65.49 | 62.45 | 74 | 54.77 | 33.4 | 71.38 | 90.6 | 57.85 | 60.63 | |
|
| TinyLLama | 1.1B | 34.81 | 67.47 | 63.15 | 74 | 60 | 34.6 | 73.12 | 88.8 | 58.88 | 61.64 | |
|
| OLMo | 1B | 34.22 | 67.55 | 61.4 | 82 | 63.96 | 36.4 | 75.1 | 86.7 | 60.3 | 63.07 | |
|
| Chuxin-1.6B-Base | 1.6B | 39.68 | 71.38 | 71.25 | 83 | 66.09 | 35.00 | 77.09 | 95 | 63.54 | 66.89 | |
|
|
|
带有†的模型表示我们直接报告了相应论文中的分数,其他的则来自于我们重新测试的结果。 |
|
|
|
Models with † denote that we directly report the scores from the corresponding paper, and others are from our implementation. |
|
|
|
### Open LLM LeaderBoard |
|
|
|
| Model | size | ARC-c |HellaSwag|MMLU |TruthfulQA |Winogrande |GSM-8k |Avg |Avg wo GSM| |
|
|:--------------|:----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:| |
|
| Gemma | 2B | 48.98 | 71.73 | 42.47 | 33 | 65.51 |10.08| 45.3 | 52.34 | |
|
| H2O-Danube | 1.8B | 39. 68 | 69.75 | 25.97 | 33.63 | 64.17| 2.05 | 39.21 |46.64| |
|
| Qwen1.5† | 1.8B | 37.88 | 61.42 | 46.71 | 39.43 | 60.3 | 33.59 | 46.55 | 49.15| |
|
| StableLM 2 | 1.6B | 43.52 |70.3 | 39.8 | 36.61 | 64.17 | 17.29 | 45.28 | 50.88 | |
|
| OpenLlama† | 3B | 39.9 | 71.6 | 27.1 | 34.8 | 67 | 0.9 |40.3|48.08| |
|
| CT-LLM | 2B | 34.81 | 54.77 | 37.81 | 39.81 | 57.85 | 7.35 | 38.73 | 45.01| |
|
| TinyLLama | 1.1B | 33.87 | 60.31 | 26.04 | 37.32 | 59.51 | 1.44 | 36.42 |43.41| |
|
| OLMo | 1B | 34.22 | 63.96 | 35.44 | 35.53 | 62.67 | 9.86 | 41.81 |48.2| |
|
| Chuxin-1.6B-Base | 1.6B | 39.68 | 66.09 | 41.07 | 37.65 | 63.54 | 12.66 | 43.45 |49.61| |
|
|
|
带有†的模型表示我们直接报告 Open LLM排行榜的分数,其他的则来自于我们重新测试的结果。 |
|
|
|
Models with † denote that we directly report the scores from the Open LLM Leaderboard, and others are from our implementation. |
|
|
|
### CMMLU, C-Eval and HumanEval |
|
|
|
| Model | size | C-Eval |CMMLU|HUMANEVAL | |
|
|:--------------|:----------:|:-----------:|:-----------:|:-----------:| |
|
| Gemma | 2B | 31 | 31.06 | 9.51| |
|
| Qwen1.5 | 1.8B | 59.38 | 57.08 | 23.17 | |
|
| StableLM 2 | 1.6B | 29.27 |30.1 | 7.32 | |
|
| CT-LLM | 2B | 36.78 | 36.4 | 9.15 | |
|
| Chuxin-1.6B-Base | 1.6B | 39.31 | 37.11 | 9.76 | |
|
|
|
## 引用 (Citation) |
|
|
|
如果你觉得我们的工作对你有帮助,欢迎引用! |
|
|
|
If you find our work helpful, feel free to give us a cite. |
|
|
|
``` |
|
@article{chuxin, |
|
title={CHUXIN: 1.6B TECHNICAL REPORT}, |
|
author={Xiaomin Zhuang, Yufan Jiang, Qiaozhi He, Zhihua Wu}, |
|
journal={arXiv preprint arXiv:2405.04828}, |
|
year={2024} |
|
} |
|
``` |
|
<br> |
|
|