metadata
tags:
- pytorch_model_hub_mixin
- model_hub_mixin
datasets:
- chuonghm/MaGGIe-HIM
metrics:
- mse
- sad
- mad
- conn
- grad
- dtssd
- messddt
pipeline_tag: image-segmentation
license: cc-by-4.0
MaGGIe: Mask Guided Gradual Human Instance Matting
[Project Page] [Code]
Weights for Instance-awareness alpha human matting with binary mask guidance for images and video
Accepted at CVPR 2024
Chuong Huynh, Seoung Wug Oh, Abhinav Shrivastava, Joon-Young Lee
Work is a part of Summer Internship 2023 at Adobe Research
Please refer to our paper for details.
Citation
If you find MaGGIe useful in your research, please cite the following paper:
@inproceedings{huynh2024maggie,
title={Maggie: Masked guided gradual human instance matting},
author={Huynh, Chuong and Oh, Seoung Wug and Shrivastava, Abhinav and Lee, Joon-Young},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={3870--3879},
year={2024}
}