kd4_opus-mt-ko-en / README.md
chunwoolee0's picture
Update README.md
76b599f
|
raw
history blame
2.49 kB
metadata
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-ko-en
tags:
  - translation
  - generated_from_trainer
datasets:
  - kde4
metrics:
  - bleu
model-index:
  - name: kd4_opus-mt-ko-en
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: kde4
          type: kde4
          config: en-ko
          split: train
          args: en-ko
        metrics:
          - name: Bleu
            type: bleu
            value: 32.11616746914562

kd4_opus-mt-ko-en

This model is a fine-tuned version of Helsinki-NLP/opus-mt-ko-en on the kde4 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3924
  • Bleu: 32.1162

Model description

More information needed

Intended uses & limitations

More information needed

Usage

You can use this model directly with a pipeline for translation language modeling:

>>> from transformers import pipeline
>>> translator = pipeline('translation',model='chunwoolee0/kd4_opus-mt-ko-e')
>>> translator("์ ์‹ฌ ์‹์‚ฌ ํ›„์— ์‚ฐ์ฑ…๊ฐ€์ž.")

[{'translation_text': "Let's go for a walk after noon."}]

>>> translator("์ด ๊ฐ•์ขŒ๋Š” ํ—ˆ๊น…ํŽ˜์ด์Šค๊ฐ€ ๋งŒ๋“  ๊ฑฐ์•ผ.")
[{'translation_text': 'This is a course by Huggingspace.'}]

>>> translator("์˜ค๋Š˜์€ ๋Šฆ๊ฒŒ ์ผ์–ด๋‚ฌ๋‹ค.")
[{'translation_text': "I'm up late today."}]

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Step Training Loss 500 1.858500 1000 1.781400 1500 1.715200 2000 1.678100 2500 1.546600 3000 1.488700 3500 1.503500 4000 1.455100 4500 1.419100 5000 1.393400 5500 1.357100 6000 1.339400 TrainOutput(global_step=6474, training_loss=1.532715692246148, metrics={'train_runtime': 1035.7775, 'train_samples_per_second': 199.957, 'train_steps_per_second': 6.25, 'total_flos': 2551308264603648.0, 'train_loss': 1.532715692246148, 'epoch': 3.0})

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3