ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("chrisekwugum/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
'for a specific procurement through separate joint ventures with different protégés.” Id. The SBA \nunderscored this purpose by highlighting that in acquiring a second protégé, the mentor “has \nalready assured SBA that the two protégés would not be competitors. If the two mentor-protégé \nrelationships were approved in the same [North American Industry Classification System] code,',
'What is the context of the mentor-protégé relationships mentioned?',
"Where can the details of the CIA's framing of the plaintiff's injury be found?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.5564 | 0.544 | 0.5131 | 0.459 | 0.3648 |
cosine_accuracy@3 | 0.6059 | 0.5873 | 0.5549 | 0.5116 | 0.4049 |
cosine_accuracy@5 | 0.6955 | 0.6847 | 0.6383 | 0.5873 | 0.4745 |
cosine_accuracy@10 | 0.7759 | 0.7604 | 0.7079 | 0.6553 | 0.541 |
cosine_precision@1 | 0.5564 | 0.544 | 0.5131 | 0.459 | 0.3648 |
cosine_precision@3 | 0.5265 | 0.5106 | 0.4848 | 0.4338 | 0.3483 |
cosine_precision@5 | 0.4022 | 0.3935 | 0.3713 | 0.3372 | 0.2742 |
cosine_precision@10 | 0.2388 | 0.2343 | 0.2185 | 0.2017 | 0.166 |
cosine_recall@1 | 0.1977 | 0.1947 | 0.1802 | 0.1668 | 0.1282 |
cosine_recall@3 | 0.5216 | 0.5067 | 0.478 | 0.433 | 0.3412 |
cosine_recall@5 | 0.6432 | 0.6318 | 0.5926 | 0.5422 | 0.4383 |
cosine_recall@10 | 0.7553 | 0.7434 | 0.6931 | 0.6388 | 0.5255 |
cosine_ndcg@10 | 0.662 | 0.6493 | 0.607 | 0.5564 | 0.4496 |
cosine_mrr@10 | 0.6047 | 0.5911 | 0.5553 | 0.5037 | 0.4034 |
cosine_map@100 | 0.6446 | 0.632 | 0.5963 | 0.5468 | 0.4453 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 28 tokens
- mean: 97.21 tokens
- max: 170 tokens
- min: 7 tokens
- mean: 16.7 tokens
- max: 39 tokens
- Samples:
positive anchor Counts Seven, Nine, and Ten in No. 11-445: February 6, 2010 FOIA
Requests to the CIA, State Department, and NSA
On February 6, 2010, the plaintiff submitted three substantially identical FOIA
requests—one to the CIA, one to the State Department, and one to the National Security Agency
(“NSA”). The request to the CIA sought “all current training handbooks, manuals, guidelines,What is the number associated with the case involving Counts Seven, Nine, and Ten?
The Government’s notion of a categorical principle stems mainly from a series of
decisions in this District. Defs.’ Mem. at 14; Defs.’ Reply at 9 n.2. The first was Gates v.
Schlesinger, 366 F. Supp. 797 (D.D.C. 1973), which stated that “an advisory committee is not an
‘agency.’” Id. at 799.
Gates’s first rationale for this conclusion was that FACA “utilizes the definition ofFrom where does the Government's notion of a categorical principle mainly stem?
sort its incoming FOIA requests based on fee categories.” First Lutz Decl. ¶ 11. The CIA’s
declarant also states that “this information [i.e., fee category] is not included in the electronic
system,” though the CIA’s declarant also avers that “[f]ee category is not a mandatory field,” and
thus “this information is often not included in a FOIA request record.” Id. The plaintiff focusesAccording to the CIA's declarant, is fee category a mandatory field?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 91.392 | - | - | - | - | - |
1.0 | 12 | - | 0.6238 | 0.6027 | 0.5669 | 0.5230 | 0.4009 |
1.7033 | 20 | 38.8819 | - | - | - | - | - |
2.0 | 24 | - | 0.6596 | 0.6423 | 0.5986 | 0.5491 | 0.4384 |
2.5275 | 30 | 28.6263 | - | - | - | - | - |
3.0 | 36 | - | 0.6615 | 0.6502 | 0.6058 | 0.5575 | 0.4486 |
3.3516 | 40 | 25.2135 | - | - | - | - | - |
3.7033 | 44 | - | 0.6620 | 0.6493 | 0.6070 | 0.5564 | 0.4496 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for chrisekwugum/modernbert-embed-base-legal-matryoshka-2
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.556
- Cosine Accuracy@3 on dim 768self-reported0.606
- Cosine Accuracy@5 on dim 768self-reported0.696
- Cosine Accuracy@10 on dim 768self-reported0.776
- Cosine Precision@1 on dim 768self-reported0.556
- Cosine Precision@3 on dim 768self-reported0.527
- Cosine Precision@5 on dim 768self-reported0.402
- Cosine Precision@10 on dim 768self-reported0.239
- Cosine Recall@1 on dim 768self-reported0.198
- Cosine Recall@3 on dim 768self-reported0.522