|
--- |
|
license: mit |
|
base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: best_bert_model_fold_5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# best_bert_model_fold_5 |
|
|
|
This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0532 |
|
- Accuracy: 0.8586 |
|
- Precision: 0.8342 |
|
- Recall: 0.8005 |
|
- F1: 0.8134 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 252 | 0.5880 | 0.8048 | 0.8281 | 0.6620 | 0.6694 | |
|
| 0.5304 | 2.0 | 504 | 0.8974 | 0.7928 | 0.7497 | 0.7582 | 0.7525 | |
|
| 0.5304 | 3.0 | 756 | 1.0145 | 0.7928 | 0.7483 | 0.7455 | 0.7418 | |
|
| 0.1872 | 4.0 | 1008 | 1.0229 | 0.8227 | 0.7856 | 0.7561 | 0.7678 | |
|
| 0.1872 | 5.0 | 1260 | 1.0532 | 0.8586 | 0.8342 | 0.8005 | 0.8134 | |
|
| 0.037 | 6.0 | 1512 | 1.2624 | 0.8347 | 0.7927 | 0.7997 | 0.7957 | |
|
| 0.037 | 7.0 | 1764 | 1.3287 | 0.8227 | 0.7806 | 0.7951 | 0.7870 | |
|
| 0.0076 | 8.0 | 2016 | 1.3369 | 0.8347 | 0.8064 | 0.7747 | 0.7863 | |
|
| 0.0076 | 9.0 | 2268 | 1.3292 | 0.8406 | 0.8093 | 0.7883 | 0.7974 | |
|
| 0.0002 | 10.0 | 2520 | 1.3507 | 0.8347 | 0.7970 | 0.7844 | 0.7901 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|