choiruzzia's picture
Training fold 2
b832b0d verified
|
raw
history blame
2.48 kB
metadata
license: mit
base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: best_bert_model_fold_2
    results: []

best_bert_model_fold_2

This model is a fine-tuned version of ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1931
  • Accuracy: 0.8606
  • Precision: 0.8353
  • Recall: 0.8104
  • F1: 0.8211

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 252 0.5154 0.8347 0.8228 0.7436 0.7630
0.5197 2.0 504 0.5658 0.8466 0.8122 0.7892 0.7981
0.5197 3.0 756 0.8319 0.8526 0.8328 0.7857 0.8007
0.1558 4.0 1008 0.8339 0.8526 0.8230 0.8138 0.8180
0.1558 5.0 1260 1.0511 0.8486 0.8241 0.7922 0.8052
0.0472 6.0 1512 1.1080 0.8546 0.8313 0.8008 0.8135
0.0472 7.0 1764 1.1492 0.8566 0.8315 0.8093 0.8189
0.005 8.0 2016 1.1661 0.8566 0.8289 0.8084 0.8175
0.005 9.0 2268 1.1931 0.8606 0.8353 0.8104 0.8211
0.0031 10.0 2520 1.1820 0.8586 0.8335 0.8020 0.8149

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1