|
--- |
|
license: mit |
|
base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: best_berita_bert_model_fold_3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# best_berita_bert_model_fold_3 |
|
|
|
This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1732 |
|
- Accuracy: 0.9808 |
|
- Precision: 0.9809 |
|
- Recall: 0.9811 |
|
- F1: 0.9809 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.5469 | 1.0 | 601 | 0.2814 | 0.9409 | 0.9416 | 0.9414 | 0.9410 | |
|
| 0.21 | 2.0 | 1202 | 0.1697 | 0.9600 | 0.9602 | 0.9605 | 0.9600 | |
|
| 0.1002 | 3.0 | 1803 | 0.2227 | 0.9667 | 0.9674 | 0.9673 | 0.9666 | |
|
| 0.0847 | 4.0 | 2404 | 0.2771 | 0.9584 | 0.9599 | 0.9592 | 0.9581 | |
|
| 0.029 | 5.0 | 3005 | 0.1732 | 0.9808 | 0.9809 | 0.9811 | 0.9809 | |
|
| 0.0095 | 6.0 | 3606 | 0.2415 | 0.9734 | 0.9737 | 0.9738 | 0.9733 | |
|
| 0.0134 | 7.0 | 4207 | 0.2048 | 0.9767 | 0.9769 | 0.9771 | 0.9766 | |
|
| 0.0001 | 8.0 | 4808 | 0.2916 | 0.9692 | 0.9697 | 0.9698 | 0.9691 | |
|
| 0.0039 | 9.0 | 5409 | 0.2201 | 0.9784 | 0.9786 | 0.9787 | 0.9784 | |
|
| 0.0 | 10.0 | 6010 | 0.2293 | 0.9742 | 0.9745 | 0.9746 | 0.9742 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|