choiruzzia's picture
Training fold 5
adb17af verified
|
raw
history blame
2.65 kB
metadata
license: mit
base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 22best_berita_bert_model_fold_5
    results: []

Visualize in Weights & Biases

22best_berita_bert_model_fold_5

This model is a fine-tuned version of ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2244
  • Accuracy: 0.8436
  • Precision: 0.8477
  • Recall: 0.8429
  • F1: 0.8431

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 106 0.8179 0.6919 0.7903 0.6727 0.6450
No log 2.0 212 0.5844 0.7773 0.7841 0.7778 0.7766
No log 3.0 318 1.0969 0.7393 0.7562 0.7439 0.7378
No log 4.0 424 0.9975 0.8246 0.8247 0.8236 0.8232
0.404 5.0 530 1.1275 0.8104 0.8108 0.8067 0.8071
0.404 6.0 636 1.1943 0.8199 0.8188 0.8191 0.8189
0.404 7.0 742 1.2244 0.8436 0.8477 0.8429 0.8431
0.404 8.0 848 1.2554 0.8341 0.8370 0.8335 0.8336
0.404 9.0 954 1.2681 0.8294 0.8316 0.8288 0.8289
0.0067 10.0 1060 1.2894 0.8246 0.8264 0.8241 0.8242

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1