File size: 7,901 Bytes
51975dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
892ec0c
 
 
 
 
 
 
 
51975dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
892ec0c
 
 
 
 
 
 
 
 
 
 
 
 
 
51975dc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6681
- Answer: {'precision': 0.8778173190984578, 'recall': 0.9057527539779682, 'f1': 0.891566265060241, 'number': 817}
- Header: {'precision': 0.6036036036036037, 'recall': 0.5630252100840336, 'f1': 0.582608695652174, 'number': 119}
- Question: {'precision': 0.9024839006439742, 'recall': 0.9108635097493036, 'f1': 0.9066543438077633, 'number': 1077}
- Overall Precision: 0.8760
- Overall Recall: 0.8882
- Overall F1: 0.8821
- Overall Accuracy: 0.8030

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Answer                                                                                                   | Header                                                                                                    | Question                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.431         | 10.5263  | 200  | 1.0598          | {'precision': 0.8017718715393134, 'recall': 0.8861689106487148, 'f1': 0.841860465116279, 'number': 817}  | {'precision': 0.4228187919463087, 'recall': 0.5294117647058824, 'f1': 0.47014925373134325, 'number': 119} | {'precision': 0.8755935422602089, 'recall': 0.8560817084493965, 'f1': 0.8657276995305164, 'number': 1077} | 0.8119            | 0.8490         | 0.8300     | 0.7774           |
| 0.0542        | 21.0526  | 400  | 1.2173          | {'precision': 0.8382352941176471, 'recall': 0.9069767441860465, 'f1': 0.8712522045855379, 'number': 817} | {'precision': 0.5350877192982456, 'recall': 0.5126050420168067, 'f1': 0.5236051502145922, 'number': 119}  | {'precision': 0.8882521489971347, 'recall': 0.8635097493036211, 'f1': 0.8757062146892656, 'number': 1077} | 0.8469            | 0.8604         | 0.8536     | 0.8016           |
| 0.014         | 31.5789  | 600  | 1.2955          | {'precision': 0.8415051311288484, 'recall': 0.9033047735618115, 'f1': 0.8713105076741442, 'number': 817} | {'precision': 0.6210526315789474, 'recall': 0.4957983193277311, 'f1': 0.5514018691588785, 'number': 119}  | {'precision': 0.8972477064220183, 'recall': 0.9080779944289693, 'f1': 0.9026303645592985, 'number': 1077} | 0.8608            | 0.8818         | 0.8712     | 0.8160           |
| 0.0064        | 42.1053  | 800  | 1.2848          | {'precision': 0.8696186961869619, 'recall': 0.8653610771113831, 'f1': 0.8674846625766871, 'number': 817} | {'precision': 0.5193798449612403, 'recall': 0.5630252100840336, 'f1': 0.5403225806451614, 'number': 119}  | {'precision': 0.858274647887324, 'recall': 0.9052924791086351, 'f1': 0.8811568007230005, 'number': 1077}  | 0.8417            | 0.8689         | 0.8550     | 0.8222           |
| 0.0037        | 52.6316  | 1000 | 1.5983          | {'precision': 0.8530751708428246, 'recall': 0.9167686658506732, 'f1': 0.8837758112094395, 'number': 817} | {'precision': 0.5658914728682171, 'recall': 0.6134453781512605, 'f1': 0.5887096774193549, 'number': 119}  | {'precision': 0.8946360153256705, 'recall': 0.8672237697307336, 'f1': 0.8807166430928807, 'number': 1077} | 0.8562            | 0.8723         | 0.8642     | 0.7916           |
| 0.0034        | 63.1579  | 1200 | 1.5936          | {'precision': 0.85, 'recall': 0.9155446756425949, 'f1': 0.881555686505598, 'number': 817}                | {'precision': 0.5619047619047619, 'recall': 0.4957983193277311, 'f1': 0.5267857142857143, 'number': 119}  | {'precision': 0.8912442396313364, 'recall': 0.8978644382544104, 'f1': 0.8945420906567992, 'number': 1077} | 0.8570            | 0.8813         | 0.8690     | 0.8102           |
| 0.0021        | 73.6842  | 1400 | 1.4765          | {'precision': 0.8558139534883721, 'recall': 0.9008567931456548, 'f1': 0.877757901013715, 'number': 817}  | {'precision': 0.5619047619047619, 'recall': 0.4957983193277311, 'f1': 0.5267857142857143, 'number': 119}  | {'precision': 0.885036496350365, 'recall': 0.9006499535747446, 'f1': 0.892774965485504, 'number': 1077}   | 0.8564            | 0.8768         | 0.8665     | 0.8010           |
| 0.0009        | 84.2105  | 1600 | 1.6681          | {'precision': 0.8778173190984578, 'recall': 0.9057527539779682, 'f1': 0.891566265060241, 'number': 817}  | {'precision': 0.6036036036036037, 'recall': 0.5630252100840336, 'f1': 0.582608695652174, 'number': 119}   | {'precision': 0.9024839006439742, 'recall': 0.9108635097493036, 'f1': 0.9066543438077633, 'number': 1077} | 0.8760            | 0.8882         | 0.8821     | 0.8030           |
| 0.0003        | 94.7368  | 1800 | 1.6379          | {'precision': 0.8595238095238096, 'recall': 0.8837209302325582, 'f1': 0.8714544357272178, 'number': 817} | {'precision': 0.5929203539823009, 'recall': 0.5630252100840336, 'f1': 0.5775862068965517, 'number': 119}  | {'precision': 0.896709323583181, 'recall': 0.9108635097493036, 'f1': 0.9037309995393827, 'number': 1077}  | 0.8647            | 0.8793         | 0.8719     | 0.7986           |
| 0.0002        | 105.2632 | 2000 | 1.7186          | {'precision': 0.8644859813084113, 'recall': 0.9057527539779682, 'f1': 0.8846383741781233, 'number': 817} | {'precision': 0.5675675675675675, 'recall': 0.5294117647058824, 'f1': 0.5478260869565218, 'number': 119}  | {'precision': 0.8921658986175115, 'recall': 0.8987929433611885, 'f1': 0.8954671600370029, 'number': 1077} | 0.8631            | 0.8798         | 0.8713     | 0.7978           |
| 0.0003        | 115.7895 | 2200 | 1.6765          | {'precision': 0.8690476190476191, 'recall': 0.8935128518971848, 'f1': 0.8811104405552203, 'number': 817} | {'precision': 0.5726495726495726, 'recall': 0.5630252100840336, 'f1': 0.5677966101694915, 'number': 119}  | {'precision': 0.8934802571166207, 'recall': 0.903435468895079, 'f1': 0.8984302862419206, 'number': 1077}  | 0.8651            | 0.8793         | 0.8721     | 0.8000           |
| 0.0003        | 126.3158 | 2400 | 1.7309          | {'precision': 0.8817852834740652, 'recall': 0.8947368421052632, 'f1': 0.888213851761847, 'number': 817}  | {'precision': 0.5675675675675675, 'recall': 0.5294117647058824, 'f1': 0.5478260869565218, 'number': 119}  | {'precision': 0.8914233576642335, 'recall': 0.9071494893221913, 'f1': 0.8992176714219972, 'number': 1077} | 0.8698            | 0.8798         | 0.8748     | 0.7959           |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1