chintans commited on
Commit
892ec0c
1 Parent(s): 274d835

End of training

Browse files
README.md CHANGED
@@ -15,14 +15,14 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 1.7288
19
- - Answer: {'precision': 0.8730904817861339, 'recall': 0.9094247246022031, 'f1': 0.8908872901678656, 'number': 817}
20
- - Header: {'precision': 0.6458333333333334, 'recall': 0.5210084033613446, 'f1': 0.5767441860465117, 'number': 119}
21
- - Question: {'precision': 0.8807174887892377, 'recall': 0.9117920148560817, 'f1': 0.895985401459854, 'number': 1077}
22
- - Overall Precision: 0.8666
23
- - Overall Recall: 0.8877
24
- - Overall F1: 0.8771
25
- - Overall Accuracy: 0.7984
26
 
27
  ## Model description
28
 
@@ -52,20 +52,20 @@ The following hyperparameters were used during training:
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
- |:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
- | 0.404 | 10.5263 | 200 | 1.1544 | {'precision': 0.8410138248847926, 'recall': 0.8935128518971848, 'f1': 0.8664688427299703, 'number': 817} | {'precision': 0.423841059602649, 'recall': 0.5378151260504201, 'f1': 0.47407407407407404, 'number': 119} | {'precision': 0.8815165876777251, 'recall': 0.8635097493036211, 'f1': 0.8724202626641652, 'number': 1077} | 0.8312 | 0.8564 | 0.8437 | 0.7881 |
58
- | 0.0468 | 21.0526 | 400 | 1.2727 | {'precision': 0.8417508417508418, 'recall': 0.9179926560587516, 'f1': 0.8782201405152226, 'number': 817} | {'precision': 0.5739130434782609, 'recall': 0.5546218487394958, 'f1': 0.5641025641025642, 'number': 119} | {'precision': 0.9006499535747446, 'recall': 0.9006499535747446, 'f1': 0.9006499535747446, 'number': 1077} | 0.8574 | 0.8872 | 0.8721 | 0.8097 |
59
- | 0.0134 | 31.5789 | 600 | 1.4898 | {'precision': 0.8528389339513326, 'recall': 0.9008567931456548, 'f1': 0.8761904761904762, 'number': 817} | {'precision': 0.5892857142857143, 'recall': 0.5546218487394958, 'f1': 0.5714285714285715, 'number': 119} | {'precision': 0.8794964028776978, 'recall': 0.9080779944289693, 'f1': 0.8935587026039287, 'number': 1077} | 0.8529 | 0.8843 | 0.8683 | 0.7909 |
60
- | 0.008 | 42.1053 | 800 | 1.7131 | {'precision': 0.8675263774912075, 'recall': 0.9057527539779682, 'f1': 0.8862275449101797, 'number': 817} | {'precision': 0.5528455284552846, 'recall': 0.5714285714285714, 'f1': 0.5619834710743802, 'number': 119} | {'precision': 0.899624765478424, 'recall': 0.8904363974001857, 'f1': 0.8950069995333644, 'number': 1077} | 0.8653 | 0.8778 | 0.8715 | 0.7865 |
61
- | 0.0053 | 52.6316 | 1000 | 1.5916 | {'precision': 0.8553386911595867, 'recall': 0.9118727050183598, 'f1': 0.8827014218009479, 'number': 817} | {'precision': 0.5163934426229508, 'recall': 0.5294117647058824, 'f1': 0.5228215767634855, 'number': 119} | {'precision': 0.8995391705069125, 'recall': 0.9062209842154132, 'f1': 0.902867715078631, 'number': 1077} | 0.8585 | 0.8862 | 0.8722 | 0.7891 |
62
- | 0.0026 | 63.1579 | 1200 | 1.5475 | {'precision': 0.8837772397094431, 'recall': 0.8935128518971848, 'f1': 0.8886183810103468, 'number': 817} | {'precision': 0.5294117647058824, 'recall': 0.6050420168067226, 'f1': 0.5647058823529412, 'number': 119} | {'precision': 0.8887884267631103, 'recall': 0.9127205199628597, 'f1': 0.9005955107650022, 'number': 1077} | 0.8632 | 0.8867 | 0.8748 | 0.7981 |
63
- | 0.0024 | 73.6842 | 1400 | 1.7288 | {'precision': 0.8730904817861339, 'recall': 0.9094247246022031, 'f1': 0.8908872901678656, 'number': 817} | {'precision': 0.6458333333333334, 'recall': 0.5210084033613446, 'f1': 0.5767441860465117, 'number': 119} | {'precision': 0.8807174887892377, 'recall': 0.9117920148560817, 'f1': 0.895985401459854, 'number': 1077} | 0.8666 | 0.8877 | 0.8771 | 0.7984 |
64
- | 0.0012 | 84.2105 | 1600 | 1.6515 | {'precision': 0.8591549295774648, 'recall': 0.8959608323133414, 'f1': 0.8771719592570402, 'number': 817} | {'precision': 0.5929203539823009, 'recall': 0.5630252100840336, 'f1': 0.5775862068965517, 'number': 119} | {'precision': 0.879746835443038, 'recall': 0.903435468895079, 'f1': 0.891433806688044, 'number': 1077} | 0.8556 | 0.8803 | 0.8678 | 0.7986 |
65
- | 0.0005 | 94.7368 | 1800 | 1.7500 | {'precision': 0.8662790697674418, 'recall': 0.9118727050183598, 'f1': 0.8884913536076327, 'number': 817} | {'precision': 0.6504854368932039, 'recall': 0.5630252100840336, 'f1': 0.6036036036036037, 'number': 119} | {'precision': 0.8945420906567992, 'recall': 0.8978644382544104, 'f1': 0.8962001853568119, 'number': 1077} | 0.8704 | 0.8838 | 0.8770 | 0.7948 |
66
- | 0.0003 | 105.2632 | 2000 | 1.7407 | {'precision': 0.8776722090261283, 'recall': 0.9045287637698899, 'f1': 0.8908981314044605, 'number': 817} | {'precision': 0.5929203539823009, 'recall': 0.5630252100840336, 'f1': 0.5775862068965517, 'number': 119} | {'precision': 0.8937153419593346, 'recall': 0.8978644382544104, 'f1': 0.8957850856878184, 'number': 1077} | 0.8704 | 0.8808 | 0.8756 | 0.7957 |
67
- | 0.0003 | 115.7895 | 2200 | 1.7708 | {'precision': 0.8667439165701043, 'recall': 0.9155446756425949, 'f1': 0.8904761904761905, 'number': 817} | {'precision': 0.5641025641025641, 'recall': 0.5546218487394958, 'f1': 0.559322033898305, 'number': 119} | {'precision': 0.89322191272052, 'recall': 0.89322191272052, 'f1': 0.89322191272052, 'number': 1077} | 0.8634 | 0.8823 | 0.8727 | 0.7916 |
68
- | 0.0002 | 126.3158 | 2400 | 1.7680 | {'precision': 0.8663594470046083, 'recall': 0.9204406364749081, 'f1': 0.8925816023738872, 'number': 817} | {'precision': 0.5726495726495726, 'recall': 0.5630252100840336, 'f1': 0.5677966101694915, 'number': 119} | {'precision': 0.8944444444444445, 'recall': 0.8969359331476323, 'f1': 0.8956884561891516, 'number': 1077} | 0.8644 | 0.8867 | 0.8754 | 0.7925 |
69
 
70
 
71
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 1.6681
19
+ - Answer: {'precision': 0.8778173190984578, 'recall': 0.9057527539779682, 'f1': 0.891566265060241, 'number': 817}
20
+ - Header: {'precision': 0.6036036036036037, 'recall': 0.5630252100840336, 'f1': 0.582608695652174, 'number': 119}
21
+ - Question: {'precision': 0.9024839006439742, 'recall': 0.9108635097493036, 'f1': 0.9066543438077633, 'number': 1077}
22
+ - Overall Precision: 0.8760
23
+ - Overall Recall: 0.8882
24
+ - Overall F1: 0.8821
25
+ - Overall Accuracy: 0.8030
26
 
27
  ## Model description
28
 
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 0.431 | 10.5263 | 200 | 1.0598 | {'precision': 0.8017718715393134, 'recall': 0.8861689106487148, 'f1': 0.841860465116279, 'number': 817} | {'precision': 0.4228187919463087, 'recall': 0.5294117647058824, 'f1': 0.47014925373134325, 'number': 119} | {'precision': 0.8755935422602089, 'recall': 0.8560817084493965, 'f1': 0.8657276995305164, 'number': 1077} | 0.8119 | 0.8490 | 0.8300 | 0.7774 |
58
+ | 0.0542 | 21.0526 | 400 | 1.2173 | {'precision': 0.8382352941176471, 'recall': 0.9069767441860465, 'f1': 0.8712522045855379, 'number': 817} | {'precision': 0.5350877192982456, 'recall': 0.5126050420168067, 'f1': 0.5236051502145922, 'number': 119} | {'precision': 0.8882521489971347, 'recall': 0.8635097493036211, 'f1': 0.8757062146892656, 'number': 1077} | 0.8469 | 0.8604 | 0.8536 | 0.8016 |
59
+ | 0.014 | 31.5789 | 600 | 1.2955 | {'precision': 0.8415051311288484, 'recall': 0.9033047735618115, 'f1': 0.8713105076741442, 'number': 817} | {'precision': 0.6210526315789474, 'recall': 0.4957983193277311, 'f1': 0.5514018691588785, 'number': 119} | {'precision': 0.8972477064220183, 'recall': 0.9080779944289693, 'f1': 0.9026303645592985, 'number': 1077} | 0.8608 | 0.8818 | 0.8712 | 0.8160 |
60
+ | 0.0064 | 42.1053 | 800 | 1.2848 | {'precision': 0.8696186961869619, 'recall': 0.8653610771113831, 'f1': 0.8674846625766871, 'number': 817} | {'precision': 0.5193798449612403, 'recall': 0.5630252100840336, 'f1': 0.5403225806451614, 'number': 119} | {'precision': 0.858274647887324, 'recall': 0.9052924791086351, 'f1': 0.8811568007230005, 'number': 1077} | 0.8417 | 0.8689 | 0.8550 | 0.8222 |
61
+ | 0.0037 | 52.6316 | 1000 | 1.5983 | {'precision': 0.8530751708428246, 'recall': 0.9167686658506732, 'f1': 0.8837758112094395, 'number': 817} | {'precision': 0.5658914728682171, 'recall': 0.6134453781512605, 'f1': 0.5887096774193549, 'number': 119} | {'precision': 0.8946360153256705, 'recall': 0.8672237697307336, 'f1': 0.8807166430928807, 'number': 1077} | 0.8562 | 0.8723 | 0.8642 | 0.7916 |
62
+ | 0.0034 | 63.1579 | 1200 | 1.5936 | {'precision': 0.85, 'recall': 0.9155446756425949, 'f1': 0.881555686505598, 'number': 817} | {'precision': 0.5619047619047619, 'recall': 0.4957983193277311, 'f1': 0.5267857142857143, 'number': 119} | {'precision': 0.8912442396313364, 'recall': 0.8978644382544104, 'f1': 0.8945420906567992, 'number': 1077} | 0.8570 | 0.8813 | 0.8690 | 0.8102 |
63
+ | 0.0021 | 73.6842 | 1400 | 1.4765 | {'precision': 0.8558139534883721, 'recall': 0.9008567931456548, 'f1': 0.877757901013715, 'number': 817} | {'precision': 0.5619047619047619, 'recall': 0.4957983193277311, 'f1': 0.5267857142857143, 'number': 119} | {'precision': 0.885036496350365, 'recall': 0.9006499535747446, 'f1': 0.892774965485504, 'number': 1077} | 0.8564 | 0.8768 | 0.8665 | 0.8010 |
64
+ | 0.0009 | 84.2105 | 1600 | 1.6681 | {'precision': 0.8778173190984578, 'recall': 0.9057527539779682, 'f1': 0.891566265060241, 'number': 817} | {'precision': 0.6036036036036037, 'recall': 0.5630252100840336, 'f1': 0.582608695652174, 'number': 119} | {'precision': 0.9024839006439742, 'recall': 0.9108635097493036, 'f1': 0.9066543438077633, 'number': 1077} | 0.8760 | 0.8882 | 0.8821 | 0.8030 |
65
+ | 0.0003 | 94.7368 | 1800 | 1.6379 | {'precision': 0.8595238095238096, 'recall': 0.8837209302325582, 'f1': 0.8714544357272178, 'number': 817} | {'precision': 0.5929203539823009, 'recall': 0.5630252100840336, 'f1': 0.5775862068965517, 'number': 119} | {'precision': 0.896709323583181, 'recall': 0.9108635097493036, 'f1': 0.9037309995393827, 'number': 1077} | 0.8647 | 0.8793 | 0.8719 | 0.7986 |
66
+ | 0.0002 | 105.2632 | 2000 | 1.7186 | {'precision': 0.8644859813084113, 'recall': 0.9057527539779682, 'f1': 0.8846383741781233, 'number': 817} | {'precision': 0.5675675675675675, 'recall': 0.5294117647058824, 'f1': 0.5478260869565218, 'number': 119} | {'precision': 0.8921658986175115, 'recall': 0.8987929433611885, 'f1': 0.8954671600370029, 'number': 1077} | 0.8631 | 0.8798 | 0.8713 | 0.7978 |
67
+ | 0.0003 | 115.7895 | 2200 | 1.6765 | {'precision': 0.8690476190476191, 'recall': 0.8935128518971848, 'f1': 0.8811104405552203, 'number': 817} | {'precision': 0.5726495726495726, 'recall': 0.5630252100840336, 'f1': 0.5677966101694915, 'number': 119} | {'precision': 0.8934802571166207, 'recall': 0.903435468895079, 'f1': 0.8984302862419206, 'number': 1077} | 0.8651 | 0.8793 | 0.8721 | 0.8000 |
68
+ | 0.0003 | 126.3158 | 2400 | 1.7309 | {'precision': 0.8817852834740652, 'recall': 0.8947368421052632, 'f1': 0.888213851761847, 'number': 817} | {'precision': 0.5675675675675675, 'recall': 0.5294117647058824, 'f1': 0.5478260869565218, 'number': 119} | {'precision': 0.8914233576642335, 'recall': 0.9071494893221913, 'f1': 0.8992176714219972, 'number': 1077} | 0.8698 | 0.8798 | 0.8748 | 0.7959 |
69
 
70
 
71
  ### Framework versions
logs/events.out.tfevents.1716812721.c190ecb2bcd6.25029.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:33ee7b91d3f8c7c5957bdef7185086266fd0b36250afec166c90110f0ceff6f9
3
- size 13784
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e28a8c21bc29bb5829a7ec5e18857e9fe8e2c3986015dd04bff3abd8195adec0
3
+ size 14138
logs/events.out.tfevents.1716813104.c190ecb2bcd6.25029.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef907aaa24d6453dfb907bd2df9fa4e02b3aae53673e6c79842587b31883ba79
3
+ size 592
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:78ef2adcf3e03e031bcd37e26513056cd86f5f87a15ead3b7eec2881df7e73e1
3
  size 520727564
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e29a8e1acfb54720f0741f09d44c5e2cc2bc84ebf1d99a1a738c58ccdfa3a9a
3
  size 520727564
tokenizer.json CHANGED
@@ -1,21 +1,7 @@
1
  {
2
  "version": "1.0",
3
- "truncation": {
4
- "direction": "Right",
5
- "max_length": 512,
6
- "strategy": "LongestFirst",
7
- "stride": 0
8
- },
9
- "padding": {
10
- "strategy": {
11
- "Fixed": 512
12
- },
13
- "direction": "Right",
14
- "pad_to_multiple_of": null,
15
- "pad_id": 1,
16
- "pad_type_id": 0,
17
- "pad_token": "<pad>"
18
- },
19
  "added_tokens": [
20
  {
21
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": null,
4
+ "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,