test_ner3

This model is a fine-tuned version of distilbert-base-uncased on the pv_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2983
  • Precision: 0.6698
  • Recall: 0.6499
  • F1: 0.6597
  • Accuracy: 0.9607

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1106 1.0 1813 0.1128 0.6050 0.5949 0.5999 0.9565
0.0705 2.0 3626 0.1190 0.6279 0.6122 0.6200 0.9585
0.0433 3.0 5439 0.1458 0.6342 0.5983 0.6157 0.9574
0.0301 4.0 7252 0.1453 0.6305 0.6818 0.6552 0.9594
0.0196 5.0 9065 0.1672 0.6358 0.6871 0.6605 0.9594
0.0133 6.0 10878 0.1931 0.6427 0.6138 0.6279 0.9587
0.0104 7.0 12691 0.1948 0.6657 0.6511 0.6583 0.9607
0.0081 8.0 14504 0.2243 0.6341 0.6574 0.6455 0.9586
0.0054 9.0 16317 0.2432 0.6547 0.6318 0.6431 0.9588
0.0041 10.0 18130 0.2422 0.6717 0.6397 0.6553 0.9605
0.0041 11.0 19943 0.2415 0.6571 0.6420 0.6495 0.9601
0.0027 12.0 21756 0.2567 0.6560 0.6590 0.6575 0.9601
0.0023 13.0 23569 0.2609 0.6640 0.6495 0.6566 0.9606
0.002 14.0 25382 0.2710 0.6542 0.6670 0.6606 0.9598
0.0012 15.0 27195 0.2766 0.6692 0.6539 0.6615 0.9610
0.001 16.0 29008 0.2938 0.6692 0.6415 0.6551 0.9603
0.0007 17.0 30821 0.2969 0.6654 0.6490 0.6571 0.9604
0.0007 18.0 32634 0.3035 0.6628 0.6456 0.6541 0.9601
0.0007 19.0 34447 0.2947 0.6730 0.6489 0.6607 0.9609
0.0004 20.0 36260 0.2983 0.6698 0.6499 0.6597 0.9607

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
26
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results