tags: | |
- generated_from_trainer | |
metrics: | |
- rouge | |
base_model: google/pegasus-newsroom | |
model-index: | |
- name: pegasus-newsroom-malay_headlines | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# pegasus-newsroom-malay_headlines | |
This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 1.6603 | |
- Rouge1: 42.6667 | |
- Rouge2: 22.8739 | |
- Rougel: 38.6684 | |
- Rougelsum: 38.6928 | |
- Gen Len: 34.7995 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 4 | |
- eval_batch_size: 4 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | | |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | |
| 1.9713 | 1.0 | 15310 | 1.8121 | 41.1469 | 21.5262 | 37.3081 | 37.3377 | 35.0939 | | |
| 1.7917 | 2.0 | 30620 | 1.6913 | 42.4027 | 22.6089 | 38.4471 | 38.4699 | 34.8149 | | |
| 1.7271 | 3.0 | 45930 | 1.6603 | 42.6667 | 22.8739 | 38.6684 | 38.6928 | 34.7995 | | |
### Framework versions | |
- Transformers 4.12.2 | |
- Pytorch 1.9.0+cu111 | |
- Datasets 1.14.0 | |
- Tokenizers 0.10.3 | |