|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: pegasus-newsroom-malay_headlines |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pegasus-newsroom-malay_headlines |
|
|
|
This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6603 |
|
- Rouge1: 42.6667 |
|
- Rouge2: 22.8739 |
|
- Rougel: 38.6684 |
|
- Rougelsum: 38.6928 |
|
- Gen Len: 34.7995 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.9713 | 1.0 | 15310 | 1.8121 | 41.1469 | 21.5262 | 37.3081 | 37.3377 | 35.0939 | |
|
| 1.7917 | 2.0 | 30620 | 1.6913 | 42.4027 | 22.6089 | 38.4471 | 38.4699 | 34.8149 | |
|
| 1.7271 | 3.0 | 45930 | 1.6603 | 42.6667 | 22.8739 | 38.6684 | 38.6928 | 34.7995 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.2 |
|
- Pytorch 1.9.0+cu111 |
|
- Datasets 1.14.0 |
|
- Tokenizers 0.10.3 |
|
|