tags: | |
- generated_from_trainer | |
metrics: | |
- rouge | |
base_model: google/pegasus-newsroom | |
model-index: | |
- name: pegasus-newsroom-headline_writer_oct22 | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# pegasus-newsroom-headline_writer_oct22 | |
This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 1.3462 | |
- Rouge1: 41.8799 | |
- Rouge2: 23.1785 | |
- Rougel: 35.5346 | |
- Rougelsum: 35.6203 | |
- Gen Len: 34.3108 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 1 | |
- eval_batch_size: 1 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | | |
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | |
| 1.4364 | 1.0 | 38400 | 1.3730 | 41.9525 | 23.0823 | 35.5435 | 35.6485 | 34.1161 | | |
| 1.2483 | 2.0 | 76800 | 1.3430 | 42.1538 | 23.3302 | 35.8119 | 35.9063 | 33.9333 | | |
| 1.1873 | 3.0 | 115200 | 1.3462 | 41.8799 | 23.1785 | 35.5346 | 35.6203 | 34.3108 | | |
### Framework versions | |
- Transformers 4.22.2 | |
- Pytorch 1.12.1+cu113 | |
- Datasets 2.5.2 | |
- Tokenizers 0.12.1 | |