SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("chinchilla04/bge-finetuned-train")
# Run inference
sentences = [
'how do i ask about the weather in chinese',
'Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.',
"Requests for information about a vehicle's miles per gallon (MPG) rating, either in specific conditions like city driving or as an overall performance metric. Users may seek guidance on fuel efficiency for their car.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9707 |
cosine_accuracy@3 | 0.9887 |
cosine_accuracy@5 | 0.992 |
cosine_accuracy@10 | 0.9957 |
cosine_precision@1 | 0.9707 |
cosine_precision@3 | 0.3296 |
cosine_precision@5 | 0.1984 |
cosine_precision@10 | 0.0996 |
cosine_recall@1 | 0.9707 |
cosine_recall@3 | 0.9887 |
cosine_recall@5 | 0.992 |
cosine_recall@10 | 0.9957 |
cosine_ndcg@10 | 0.9842 |
cosine_mrr@10 | 0.9804 |
cosine_map@100 | 0.9806 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 15,002 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 10.66 tokens
- max: 28 tokens
- min: 25 tokens
- mean: 42.6 tokens
- max: 58 tokens
- min: 29 tokens
- mean: 41.95 tokens
- max: 58 tokens
- Samples:
anchor positive negative what expression would i use to say i love you if i were an italian
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.
can you tell me how to say 'i do not speak much spanish', in spanish
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.
what is the equivalent of, 'life is good' in french
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 3,000 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 11.06 tokens
- max: 29 tokens
- min: 26 tokens
- mean: 36.16 tokens
- max: 58 tokens
- Samples:
anchor positive in spanish, meet me tomorrow is said how
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
in french, how do i say, see you later
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
how do you say hello in japanese
Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32learning_rate
: 1e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.2load_best_model_at_end
: Trueoptim
: adamw_torch_fused
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@10 |
---|---|---|---|---|
None | 0 | - | 0.2730 | 0.9055 |
0.3198 | 150 | - | 0.0698 | 0.9633 |
0.6397 | 300 | - | 0.0642 | 0.9683 |
0.9595 | 450 | - | 0.0603 | 0.9763 |
1.0661 | 500 | 1.0338 | - | - |
1.2793 | 600 | - | 0.0612 | 0.9762 |
1.5991 | 750 | - | 0.0602 | 0.9802 |
1.9190 | 900 | - | 0.0571 | 0.9820 |
2.1322 | 1000 | 0.787 | - | - |
2.2388 | 1050 | - | 0.0585 | 0.9819 |
2.5586 | 1200 | - | 0.0565 | 0.9842 |
2.8785 | 1350 | - | 0.0578 | 0.9837 |
3.1983 | 1500 | 0.6768 | 0.0570 | 0.9844 |
3.5181 | 1650 | - | 0.0587 | 0.9837 |
3.8380 | 1800 | - | 0.0584 | 0.9837 |
None | 0 | - | 0.0565 | 0.9842 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.4.0
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for chinchilla04/bge-finetuned-train
Base model
BAAI/bge-large-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.971
- Cosine Accuracy@3 on Unknownself-reported0.989
- Cosine Accuracy@5 on Unknownself-reported0.992
- Cosine Accuracy@10 on Unknownself-reported0.996
- Cosine Precision@1 on Unknownself-reported0.971
- Cosine Precision@3 on Unknownself-reported0.330
- Cosine Precision@5 on Unknownself-reported0.198
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.971
- Cosine Recall@3 on Unknownself-reported0.989