File size: 9,384 Bytes
139782b dd8e7e1 139782b 17af92c 3cd4154 a979572 bc925cd ece9db5 ed1749d 857a089 ed1749d 17af92c ed1749d 17af92c eaaaf3d ed1749d ab8292d ed1749d 17af92c ed1749d 17af92c ed1749d 17af92c ed1749d 17af92c ed1749d 17af92c ed1749d 147d3e2 ed1749d c6dc94b 2b35800 ed1749d eaaaf3d ed1749d 17da9c4 ed1749d eaaaf3d ed1749d 4cac25e ed1749d f835528 ed1749d 4cac25e ed1749d eaaaf3d 8a4d25e ed1749d bc925cd a979572 bc925cd ed1749d 47ad845 ed1749d 17af92c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
license: cc-by-nc-4.0
---
# AVeriTeC
Data, knowledge store and source code to reproduce the baseline experiments for the [AVeriTeC](https://arxiv.org/abs/2305.13117) dataset, which will be used for the 7th [FEVER](https://fever.ai/) workshop co-hosted at EMNLP 2024.
## NEWS:
- 19.04.2024: The submisstion page (with eval.ai) for the shared-task is alive, you can participate by submitting your predictions [here](https://eval.ai/web/challenges/challenge-page/2285/overview)!
- 15.07.2024: To facilitate human evaluation we now ask the submission files to include a `scraped_text` field in your submission file, have a look in [here](https://huggingface.co/chenxwh/AVeriTeC#format-for-submission-files) for more information!
## Dataset
The training and dev dataset can be found under [data](https://huggingface.co/chenxwh/AVeriTeC/tree/main/data). Test data will be released at a later date. Each claim follows the following structure:
```json
{
"claim": "The claim text itself",
"required_reannotation": "True or False. Denotes that the claim received a second round of QG-QA and quality control annotation.",
"label": "The annotated verdict for the claim",
"justification": "A textual justification explaining how the verdict was reached from the question-answer pairs.",
"claim_date": "Our best estimate for the date the claim first appeared",
"speaker": "The person or organization that made the claim, e.g. Barrack Obama, The Onion.",
"original_claim_url": "If the claim first appeared on the internet, a url to the original location",
"cached_original_claim_url": "Where possible, an archive.org link to the original claim url",
"fact_checking_article": "The fact-checking article we extracted the claim from",
"reporting_source": "The website or organization that first published the claim, e.g. Facebook, CNN.",
"location_ISO_code": "The location most relevant for the claim. Highly useful for search.",
"claim_types": [
"The types of the claim",
],
"fact_checking_strategies": [
"The strategies employed in the fact-checking article",
],
"questions": [
{
"question": "A fact-checking question for the claim",
"answers": [
{
"answer": "The answer to the question",
"answer_type": "Whether the answer was abstractive, extractive, boolean, or unanswerable",
"source_url": "The source url for the answer",
"cached_source_url": "An archive.org link for the source url"
"source_medium": "The medium the answer appeared in, e.g. web text, a pdf, or an image.",
}
]
},
]
}
```
## Reproduce the baseline
Below are the steps to reproduce the baseline results. The main difference from the reported results in the paper is that, instead of requiring direct access to the paid Google Search API, we provide such search results for up to 1000 URLs per claim using different queries, and the scraped text as a knowledge store for retrieval for each claim. This is aimed at reducing the overhead cost of participating in the Shared Task. Another difference is that we also added text scraped from pdf URLs to the knowledge store.
### 0. Set up environment
You will need to have [Git LFS](https://git-lfs.com/) installed:
```bash
git lfs install
git clone https://huggingface.co/chenxwh/AVeriTeC
```
You can also skip the large files in the repo and selectively download them later:
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/chenxwh/AVeriTeC
```
Then create `conda` environment and install the libs.
```bash
conda create -n averitec python=3.11
conda activate averitec
pip install -r requirements.txt
python -m spacy download en_core_web_lg
python -m nltk.downloader punkt
python -m nltk.downloader wordnet
conda install pytorch pytorch-cuda=11.8 -c pytorch -c nvidia
```
### 1. Scrape text from the URLs obtained by searching queries with the Google API
The URLs of the search results and queries used for each claim can be found [here](https://huggingface.co/chenxwh/AVeriTeC/tree/main/data_store/urls).
Next, we scrape the text from the URLs and parse the text to sentences. The processed files are also provided and can be found [here](https://huggingface.co/chenxwh/AVeriTeC/tree/main/data_store/knowledge_store). You can use your own scraping tool to extract sentences from the URLs.
```bash
bash script/scraper.sh <split> <start_idx> <end_idx>
# e.g., bash script/scraper.sh dev 0 500
```
### 2. Rank the sentences in the knowledge store with BM25
Then, we rank the scraped sentences for each claim using BM25 (based on the similarity to the claim), keeping the top 100 sentences per claim.
See [bm25_sentences.py](https://huggingface.co/chenxwh/AVeriTeC/blob/main/src/reranking/bm25_sentences.py) for more argument options. We provide the output file for this step on the dev set [here](https://huggingface.co/chenxwh/AVeriTeC/blob/main/data_store/dev_top_k_sentences.json).
```bash
python -m src.reranking.bm25_sentences
```
### 3. Generate questions-answer pair for the top sentences
We use [BLOOM](https://huggingface.co/bigscience/bloom-7b1) to generate QA paris for each of the top 100 sentence, providing 10 closest claim-QA-pairs from the training set as in-context examples. See [question_generation_top_sentences.py](https://huggingface.co/chenxwh/AVeriTeC/blob/main/src/reranking/question_generation_top_sentences.py) for more argument options. We provide the output file for this step on the dev set [here](https://huggingface.co/chenxwh/AVeriTeC/blob/main/data_store/dev_top_k_qa.json).
```bash
python -m src.reranking.question_generation_top_sentences
```
### 4. Rerank the QA pairs
Using a pre-trained BERT model [bert_dual_encoder.ckpt](https://huggingface.co/chenxwh/AVeriTeC/blob/main/pretrained_models/bert_dual_encoder.ckpt), we rerank the QA paris and keep top 3 QA paris as evidence. See [rerank_questions.py](https://huggingface.co/chenxwh/AVeriTeC/blob/main/src/reranking/rerank_questions.py) for more argument options. We provide the output file for this step on the dev set [here](https://huggingface.co/chenxwh/AVeriTeC/blob/main/data_store/dev_top_3_rerank_qa.json).
```bash
python -m src.reranking.rerank_questions
```
### 5. Veracity prediction
Finally, given a claim and its 3 QA pairs as evidence, we use another pre-trained BERT model [bert_veracity.ckpt](https://huggingface.co/chenxwh/AVeriTeC/blob/main/pretrained_models/bert_veracity.ckpt) to predict the veracity label. See [veracity_prediction.py](https://huggingface.co/chenxwh/AVeriTeC/blob/main/src/prediction/veracity_prediction.py) for more argument options. We provide the prediction file for this step on the dev set [here](https://huggingface.co/chenxwh/AVeriTeC/blob/main/data_store/dev_veracity_prediction.json).
```bash
python -m src.prediction.veracity_prediction
```
Then evaluate the veracity prediction performance with (see [evaluate_veracity.py](https://huggingface.co/chenxwh/AVeriTeC/blob/main/src/prediction/evaluate_veracity.py) for more argument options):
```bash
python -m src.prediction.evaluate_veracity
```
| Model | Split | Q only | Q + A | Veracity @ 0.2 | @ 0.25 | @ 0.3 |
|-------------------|-------|--------|-------|----------------|--------|-------|
| AVeriTeC-BLOOM-7b | dev | 0.240 | 0.185 | 0.186 | 0.092 | 0.050 |
| AVeriTeC-BLOOM-7b | test | 0.248 | 0.185 | 0.176 | 0.109 | 0.059 |
## Format for submission files
To facilitate human evaluation, the submission file should include the text of the evidence documents used, retrieved through the `url` field. If external knowledge is utilized, please provide the scraped text. If our provided knowledge store is used, this can be achieved by running the following code block (see [veracity_with_scraped_text.py](https://huggingface.co/chenxwh/AVeriTeC/blob/main/src/prediction/veracity_with_scraped_text.py) for adding the text to the previous prediction file. An example output for the dev set is [here](https://huggingface.co/chenxwh/AVeriTeC/blob/main/data_store/dev_veracity_prediction_for_submission.json).
```bash
python -m src.prediction.veracity_with_scraped_text --knowledge_store_dir <directory_of_the_knowledge_store>
```
Each line of the final submission file is a json object with the following information:
```json
{
"claim_id": "The ID of the sample.",
"claim": "The claim text itself.",
"pred_label": "The predicted label of the claim.",
"evidence": [
{
"question": "The text of the generated question.",
"answer": "The text of the answer to the generated question.",
"url": "The source URL for the answer.",
"scraped_text": "The text scraped from the URL."
}
]
}
```
## Citation
If you find AVeriTeC useful for your research and applications, please cite us using this BibTeX:
```bibtex
@inproceedings{
schlichtkrull2023averitec,
title={{AV}eriTeC: A Dataset for Real-world Claim Verification with Evidence from the Web},
author={Michael Sejr Schlichtkrull and Zhijiang Guo and Andreas Vlachos},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
year={2023},
url={https://openreview.net/forum?id=fKzSz0oyaI}
}
``` |