Chenxi Whitehouse
commited on
Commit
·
4cac25e
1
Parent(s):
093ba74
update
Browse files- README.md +7 -2
- src/prediction/evaluate_veracity.py +316 -0
- src/prediction/veracity_prediction.py +5 -3
- src/reranking/rerank_questions.py +4 -2
README.md
CHANGED
@@ -101,14 +101,19 @@ python -m src.reranking.question_generation_top_sentences
|
|
101 |
### 4. Rerank the QA pairs
|
102 |
Using a pre-trained BERT model [bert_dual_encoder.ckpt](https://huggingface.co/chenxwh/AVeriTeC/blob/main/pretrained_models/bert_dual_encoder.ckpt), we rerank the QA paris and keep top 3 QA paris as evidence. See [rerank_questions.py](https://huggingface.co/chenxwh/AVeriTeC/blob/main/src/reranking/rerank_questions.py) for more argument options. We provide the output file for this step on the dev set [here](https://huggingface.co/chenxwh/AVeriTeC/blob/main/data_store/dev_top_3_rerank_qa.json).
|
103 |
```bash
|
104 |
-
python -m reranking.rerank_questions
|
105 |
```
|
106 |
|
107 |
|
108 |
### 5. Veracity prediction
|
109 |
Finally, given a claim and its 3 QA pairs as evidence, we use another pre-trained BERT model [bert_veracity.ckpt](https://huggingface.co/chenxwh/AVeriTeC/blob/main/pretrained_models/bert_veracity.ckpt) to predict the veracity label. See [veracity_prediction.py](https://huggingface.co/chenxwh/AVeriTeC/blob/main/src/prediction/veracity_prediction.py) for more argument options. We provide the prediction file for this step on the dev set [here](https://huggingface.co/chenxwh/AVeriTeC/blob/main/data_store/dev_vericity_prediction.json).
|
110 |
```bash
|
111 |
-
python -m prediction.veracity_prediction
|
|
|
|
|
|
|
|
|
|
|
112 |
```
|
113 |
|
114 |
The result for dev and the test set below. We recommend using 0.25 as cut-off score for evaluating the relevance of the evidence.
|
|
|
101 |
### 4. Rerank the QA pairs
|
102 |
Using a pre-trained BERT model [bert_dual_encoder.ckpt](https://huggingface.co/chenxwh/AVeriTeC/blob/main/pretrained_models/bert_dual_encoder.ckpt), we rerank the QA paris and keep top 3 QA paris as evidence. See [rerank_questions.py](https://huggingface.co/chenxwh/AVeriTeC/blob/main/src/reranking/rerank_questions.py) for more argument options. We provide the output file for this step on the dev set [here](https://huggingface.co/chenxwh/AVeriTeC/blob/main/data_store/dev_top_3_rerank_qa.json).
|
103 |
```bash
|
104 |
+
python -m src.reranking.rerank_questions
|
105 |
```
|
106 |
|
107 |
|
108 |
### 5. Veracity prediction
|
109 |
Finally, given a claim and its 3 QA pairs as evidence, we use another pre-trained BERT model [bert_veracity.ckpt](https://huggingface.co/chenxwh/AVeriTeC/blob/main/pretrained_models/bert_veracity.ckpt) to predict the veracity label. See [veracity_prediction.py](https://huggingface.co/chenxwh/AVeriTeC/blob/main/src/prediction/veracity_prediction.py) for more argument options. We provide the prediction file for this step on the dev set [here](https://huggingface.co/chenxwh/AVeriTeC/blob/main/data_store/dev_vericity_prediction.json).
|
110 |
```bash
|
111 |
+
python -m src.prediction.veracity_prediction
|
112 |
+
```
|
113 |
+
|
114 |
+
Then evaluate the veracity prediction performance with (see [evaluate_veracity.py](https://huggingface.co/chenxwh/AVeriTeC/blob/main/src/prediction/evaluate_veracity.py) for more argument options):
|
115 |
+
```bash
|
116 |
+
python -m src.prediction.evaluate_veracity
|
117 |
```
|
118 |
|
119 |
The result for dev and the test set below. We recommend using 0.25 as cut-off score for evaluating the relevance of the evidence.
|
src/prediction/evaluate_veracity.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import scipy
|
4 |
+
import numpy as np
|
5 |
+
import sklearn
|
6 |
+
import nltk
|
7 |
+
from nltk import word_tokenize
|
8 |
+
|
9 |
+
|
10 |
+
def pairwise_meteor(candidate, reference):
|
11 |
+
return nltk.translate.meteor_score.single_meteor_score(
|
12 |
+
word_tokenize(reference), word_tokenize(candidate)
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
def compute_all_pairwise_scores(src_data, tgt_data, metric):
|
17 |
+
scores = np.empty((len(src_data), len(tgt_data)))
|
18 |
+
|
19 |
+
for i, src in enumerate(src_data):
|
20 |
+
for j, tgt in enumerate(tgt_data):
|
21 |
+
scores[i][j] = metric(src, tgt)
|
22 |
+
|
23 |
+
return scores
|
24 |
+
|
25 |
+
|
26 |
+
def print_with_space(left, right, left_space=40):
|
27 |
+
print_spaces = " " * (left_space - len(left))
|
28 |
+
print(left + print_spaces + right)
|
29 |
+
|
30 |
+
|
31 |
+
class AVeriTeCEvaluator:
|
32 |
+
|
33 |
+
verdicts = [
|
34 |
+
"Supported",
|
35 |
+
"Refuted",
|
36 |
+
"Not Enough Evidence",
|
37 |
+
"Conflicting Evidence/Cherrypicking",
|
38 |
+
]
|
39 |
+
pairwise_metric = None
|
40 |
+
max_questions = 10
|
41 |
+
metric = None
|
42 |
+
averitec_reporting_levels = [0.1, 0.2, 0.25, 0.3, 0.4, 0.5]
|
43 |
+
|
44 |
+
def __init__(self, metric="meteor"):
|
45 |
+
self.metric = metric
|
46 |
+
if metric == "meteor":
|
47 |
+
self.pairwise_metric = pairwise_meteor
|
48 |
+
|
49 |
+
def evaluate_averitec_veracity_by_type(self, srcs, tgts, threshold=0.25):
|
50 |
+
types = {}
|
51 |
+
for src, tgt in zip(srcs, tgts):
|
52 |
+
score = self.compute_pairwise_evidence_score(src, tgt)
|
53 |
+
|
54 |
+
if score <= threshold:
|
55 |
+
score = 0
|
56 |
+
|
57 |
+
for t in tgt["claim_types"]:
|
58 |
+
if t not in types:
|
59 |
+
types[t] = []
|
60 |
+
|
61 |
+
types[t].append(score)
|
62 |
+
|
63 |
+
return {t: np.mean(v) for t, v in types.items()}
|
64 |
+
|
65 |
+
def evaluate_averitec_score(self, srcs, tgts):
|
66 |
+
scores = []
|
67 |
+
for src, tgt in zip(srcs, tgts):
|
68 |
+
score = self.compute_pairwise_evidence_score(src, tgt)
|
69 |
+
|
70 |
+
this_example_scores = [0.0 for _ in self.averitec_reporting_levels]
|
71 |
+
for i, level in enumerate(self.averitec_reporting_levels):
|
72 |
+
if score > level:
|
73 |
+
this_example_scores[i] = src["pred_label"] == tgt["label"]
|
74 |
+
|
75 |
+
scores.append(this_example_scores)
|
76 |
+
|
77 |
+
return np.mean(np.array(scores), axis=0)
|
78 |
+
|
79 |
+
def evaluate_veracity(self, src, tgt):
|
80 |
+
src_labels = [x["pred_label"] for x in src]
|
81 |
+
tgt_labels = [x["label"] for x in tgt]
|
82 |
+
|
83 |
+
acc = np.mean([s == t for s, t in zip(src_labels, tgt_labels)])
|
84 |
+
|
85 |
+
f1 = {
|
86 |
+
self.verdicts[i]: x
|
87 |
+
for i, x in enumerate(
|
88 |
+
sklearn.metrics.f1_score(
|
89 |
+
tgt_labels, src_labels, labels=self.verdicts, average=None
|
90 |
+
)
|
91 |
+
)
|
92 |
+
}
|
93 |
+
f1["macro"] = sklearn.metrics.f1_score(
|
94 |
+
tgt_labels, src_labels, labels=self.verdicts, average="macro"
|
95 |
+
)
|
96 |
+
f1["acc"] = acc
|
97 |
+
return f1
|
98 |
+
|
99 |
+
def evaluate_questions_only(self, srcs, tgts):
|
100 |
+
all_utils = []
|
101 |
+
for src, tgt in zip(srcs, tgts):
|
102 |
+
if "evidence" not in src:
|
103 |
+
# If there was no evidence, use the string evidence
|
104 |
+
src_questions = self.extract_full_comparison_strings(
|
105 |
+
src, is_target=False
|
106 |
+
)[: self.max_questions]
|
107 |
+
else:
|
108 |
+
src_questions = [
|
109 |
+
qa["question"] for qa in src["evidence"][: self.max_questions]
|
110 |
+
]
|
111 |
+
tgt_questions = [qa["question"] for qa in tgt["questions"]]
|
112 |
+
|
113 |
+
pairwise_scores = compute_all_pairwise_scores(
|
114 |
+
src_questions, tgt_questions, self.pairwise_metric
|
115 |
+
)
|
116 |
+
|
117 |
+
assignment = scipy.optimize.linear_sum_assignment(
|
118 |
+
pairwise_scores, maximize=True
|
119 |
+
)
|
120 |
+
|
121 |
+
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
|
122 |
+
|
123 |
+
# Reweight to account for unmatched target questions
|
124 |
+
reweight_term = 1 / float(len(tgt_questions))
|
125 |
+
assignment_utility *= reweight_term
|
126 |
+
|
127 |
+
all_utils.append(assignment_utility)
|
128 |
+
|
129 |
+
return np.mean(all_utils)
|
130 |
+
|
131 |
+
def get_n_best_qau(self, srcs, tgts, n=3):
|
132 |
+
all_utils = []
|
133 |
+
for src, tgt in zip(srcs, tgts):
|
134 |
+
assignment_utility = self.compute_pairwise_evidence_score(src, tgt)
|
135 |
+
|
136 |
+
all_utils.append(assignment_utility)
|
137 |
+
|
138 |
+
idxs = np.argsort(all_utils)[::-1][:n]
|
139 |
+
|
140 |
+
examples = [
|
141 |
+
(
|
142 |
+
(
|
143 |
+
srcs[i]["questions"]
|
144 |
+
if "questions" in srcs[i]
|
145 |
+
else srcs[i]["string_evidence"]
|
146 |
+
),
|
147 |
+
tgts[i]["questions"],
|
148 |
+
all_utils[i],
|
149 |
+
)
|
150 |
+
for i in idxs
|
151 |
+
]
|
152 |
+
|
153 |
+
return examples
|
154 |
+
|
155 |
+
def compute_pairwise_evidence_score(self, src, tgt):
|
156 |
+
"""Different key is used for reference_data and prediction.
|
157 |
+
For the prediction, the format is
|
158 |
+
{"evidence": [
|
159 |
+
{
|
160 |
+
"question": "What does the increased federal medical assistance percentage mean for you?",
|
161 |
+
"answer": "Appendix A: Applicability of the Increased Federal Medical Assistance Percentage ",
|
162 |
+
"url": "https://www.medicaid.gov/federal-policy-guidance/downloads/smd21003.pdf"
|
163 |
+
}],
|
164 |
+
"pred_label": "Supported"}
|
165 |
+
|
166 |
+
And for the data with fold label:
|
167 |
+
{"questions": [
|
168 |
+
{
|
169 |
+
"question": "Where was the claim first published",
|
170 |
+
"answers": [
|
171 |
+
{
|
172 |
+
"answer": "It was first published on Sccopertino",
|
173 |
+
"answer_type": "Abstractive",
|
174 |
+
"source_url": "https://web.archive.org/web/20201129141238/https://scoopertino.com/exposed-the-imac-disaster-that-almost-was/",
|
175 |
+
"source_medium": "Web text",
|
176 |
+
"cached_source_url": "https://web.archive.org/web/20201129141238/https://scoopertino.com/exposed-the-imac-disaster-that-almost-was/"
|
177 |
+
}
|
178 |
+
]
|
179 |
+
}]
|
180 |
+
"label": "Refuted"}
|
181 |
+
"""
|
182 |
+
|
183 |
+
src_strings = self.extract_full_comparison_strings(src, is_target=False)[
|
184 |
+
: self.max_questions
|
185 |
+
]
|
186 |
+
tgt_strings = self.extract_full_comparison_strings(tgt)
|
187 |
+
pairwise_scores = compute_all_pairwise_scores(
|
188 |
+
src_strings, tgt_strings, self.pairwise_metric
|
189 |
+
)
|
190 |
+
assignment = scipy.optimize.linear_sum_assignment(
|
191 |
+
pairwise_scores, maximize=True
|
192 |
+
)
|
193 |
+
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
|
194 |
+
|
195 |
+
# Reweight to account for unmatched target questions
|
196 |
+
reweight_term = 1 / float(len(tgt_strings))
|
197 |
+
assignment_utility *= reweight_term
|
198 |
+
return assignment_utility
|
199 |
+
|
200 |
+
def evaluate_questions_and_answers(self, srcs, tgts):
|
201 |
+
all_utils = []
|
202 |
+
for src, tgt in zip(srcs, tgts):
|
203 |
+
src_strings = self.extract_full_comparison_strings(src, is_target=False)[
|
204 |
+
: self.max_questions
|
205 |
+
]
|
206 |
+
tgt_strings = self.extract_full_comparison_strings(tgt)
|
207 |
+
|
208 |
+
pairwise_scores = compute_all_pairwise_scores(
|
209 |
+
src_strings, tgt_strings, self.pairwise_metric
|
210 |
+
)
|
211 |
+
|
212 |
+
assignment = scipy.optimize.linear_sum_assignment(
|
213 |
+
pairwise_scores, maximize=True
|
214 |
+
)
|
215 |
+
|
216 |
+
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
|
217 |
+
|
218 |
+
# Reweight to account for unmatched target questions
|
219 |
+
reweight_term = 1 / float(len(tgt_strings))
|
220 |
+
assignment_utility *= reweight_term
|
221 |
+
|
222 |
+
all_utils.append(assignment_utility)
|
223 |
+
|
224 |
+
return np.mean(all_utils)
|
225 |
+
|
226 |
+
def extract_full_comparison_strings(self, example, is_target=True):
|
227 |
+
example_strings = []
|
228 |
+
|
229 |
+
if is_target:
|
230 |
+
if "questions" in example:
|
231 |
+
for evidence in example["questions"]:
|
232 |
+
# If the answers is not a list, make them a list:
|
233 |
+
if not isinstance(evidence["answers"], list):
|
234 |
+
evidence["answers"] = [evidence["answers"]]
|
235 |
+
|
236 |
+
for answer in evidence["answers"]:
|
237 |
+
example_strings.append(
|
238 |
+
evidence["question"] + " " + answer["answer"]
|
239 |
+
)
|
240 |
+
if (
|
241 |
+
"answer_type" in answer
|
242 |
+
and answer["answer_type"] == "Boolean"
|
243 |
+
):
|
244 |
+
example_strings[-1] += ". " + answer["boolean_explanation"]
|
245 |
+
if len(evidence["answers"]) == 0:
|
246 |
+
example_strings.append(
|
247 |
+
evidence["question"] + " No answer could be found."
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
if "evidence" in example:
|
251 |
+
for evidence in example["evidence"]:
|
252 |
+
example_strings.append(
|
253 |
+
evidence["question"] + " " + evidence["answer"]
|
254 |
+
)
|
255 |
+
|
256 |
+
if "string_evidence" in example:
|
257 |
+
for full_string_evidence in example["string_evidence"]:
|
258 |
+
example_strings.append(full_string_evidence)
|
259 |
+
return example_strings
|
260 |
+
|
261 |
+
|
262 |
+
if __name__ == "__main__":
|
263 |
+
parser = argparse.ArgumentParser(description="Evaluate the veracity prediction.")
|
264 |
+
parser.add_argument(
|
265 |
+
"-i",
|
266 |
+
"--prediction_file",
|
267 |
+
default="data_store/dev_veracity.json",
|
268 |
+
help="Json file with claim, evidence, and veracity prediction.",
|
269 |
+
)
|
270 |
+
parser.add_argument(
|
271 |
+
"--label_file",
|
272 |
+
default="data/dev.json",
|
273 |
+
help="Json file with labels.",
|
274 |
+
)
|
275 |
+
args = parser.parse_args()
|
276 |
+
|
277 |
+
with open(args.prediction_file) as f:
|
278 |
+
predictions = json.load(f)
|
279 |
+
|
280 |
+
with open(args.label_file) as f:
|
281 |
+
references = json.load(f)
|
282 |
+
|
283 |
+
scorer = AVeriTeCEvaluator()
|
284 |
+
q_score = scorer.evaluate_questions_only(predictions, references)
|
285 |
+
print_with_space("Question-only score (HU-" + scorer.metric + "):", str(q_score))
|
286 |
+
p_score = scorer.evaluate_questions_and_answers(predictions, references)
|
287 |
+
print_with_space("Question-answer score (HU-" + scorer.metric + "):", str(p_score))
|
288 |
+
print("====================")
|
289 |
+
|
290 |
+
v_score = scorer.evaluate_veracity(predictions, references)
|
291 |
+
print("Veracity F1 scores:")
|
292 |
+
for k, v in v_score.items():
|
293 |
+
print_with_space(" * " + k + ":", str(v))
|
294 |
+
|
295 |
+
print("--------------------")
|
296 |
+
print("AVeriTeC scores:")
|
297 |
+
|
298 |
+
v_score = scorer.evaluate_averitec_score(predictions, references)
|
299 |
+
|
300 |
+
for i, level in enumerate(scorer.averitec_reporting_levels):
|
301 |
+
print_with_space(
|
302 |
+
" * Veracity scores (" + scorer.metric + " @ " + str(level) + "):",
|
303 |
+
str(v_score[i]),
|
304 |
+
)
|
305 |
+
print("--------------------")
|
306 |
+
type_scores = scorer.evaluate_averitec_veracity_by_type(
|
307 |
+
predictions, references, threshold=0.2
|
308 |
+
)
|
309 |
+
for t, v in type_scores.items():
|
310 |
+
print_with_space(" * Veracity scores (" + t + "):", str(v))
|
311 |
+
print("--------------------")
|
312 |
+
type_scores = scorer.evaluate_averitec_veracity_by_type(
|
313 |
+
predictions, references, threshold=0.3
|
314 |
+
)
|
315 |
+
for t, v in type_scores.items():
|
316 |
+
print_with_space(" * Veracity scores (" + t + "):", str(v))
|
src/prediction/veracity_prediction.py
CHANGED
@@ -24,7 +24,7 @@ if __name__ == "__main__":
|
|
24 |
parser.add_argument(
|
25 |
"-i",
|
26 |
"--claim_with_evidence_file",
|
27 |
-
default="
|
28 |
help="Json file with claim and top question-answer pairs as evidence.",
|
29 |
)
|
30 |
parser.add_argument(
|
@@ -41,8 +41,10 @@ if __name__ == "__main__":
|
|
41 |
)
|
42 |
args = parser.parse_args()
|
43 |
|
|
|
44 |
with open(args.claim_with_evidence_file) as f:
|
45 |
-
|
|
|
46 |
|
47 |
bert_model_name = "bert-base-uncased"
|
48 |
|
@@ -113,7 +115,7 @@ if __name__ == "__main__":
|
|
113 |
"claim_id": example["claim_id"],
|
114 |
"claim": example["claim"],
|
115 |
"evidence": example["evidence"],
|
116 |
-
"
|
117 |
}
|
118 |
predictions.append(json_data)
|
119 |
|
|
|
24 |
parser.add_argument(
|
25 |
"-i",
|
26 |
"--claim_with_evidence_file",
|
27 |
+
default="data_store/dev_top_3_rerank_qa.json",
|
28 |
help="Json file with claim and top question-answer pairs as evidence.",
|
29 |
)
|
30 |
parser.add_argument(
|
|
|
41 |
)
|
42 |
args = parser.parse_args()
|
43 |
|
44 |
+
examples = []
|
45 |
with open(args.claim_with_evidence_file) as f:
|
46 |
+
for line in f:
|
47 |
+
examples.append(json.loads(line))
|
48 |
|
49 |
bert_model_name = "bert-base-uncased"
|
50 |
|
|
|
115 |
"claim_id": example["claim_id"],
|
116 |
"claim": example["claim"],
|
117 |
"evidence": example["evidence"],
|
118 |
+
"pred_label": LABEL[answer],
|
119 |
}
|
120 |
predictions.append(json_data)
|
121 |
|
src/reranking/rerank_questions.py
CHANGED
@@ -23,7 +23,7 @@ if __name__ == "__main__":
|
|
23 |
parser.add_argument(
|
24 |
"-o",
|
25 |
"--output_file",
|
26 |
-
default="
|
27 |
help="Json file with the top3 reranked questions.",
|
28 |
)
|
29 |
parser.add_argument(
|
@@ -40,8 +40,10 @@ if __name__ == "__main__":
|
|
40 |
)
|
41 |
args = parser.parse_args()
|
42 |
|
|
|
43 |
with open(args.top_k_qa_file) as f:
|
44 |
-
|
|
|
45 |
|
46 |
bert_model_name = "bert-base-uncased"
|
47 |
|
|
|
23 |
parser.add_argument(
|
24 |
"-o",
|
25 |
"--output_file",
|
26 |
+
default="data_store/dev_top_3_rerank_qa.json",
|
27 |
help="Json file with the top3 reranked questions.",
|
28 |
)
|
29 |
parser.add_argument(
|
|
|
40 |
)
|
41 |
args = parser.parse_args()
|
42 |
|
43 |
+
examples = []
|
44 |
with open(args.top_k_qa_file) as f:
|
45 |
+
for line in f:
|
46 |
+
examples.append(json.loads(line))
|
47 |
|
48 |
bert_model_name = "bert-base-uncased"
|
49 |
|