ner_twitter_fine_tune

This model is a fine-tuned version of distilbert/distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4211
  • Precision: 0.6078
  • Recall: 0.5901
  • F1: 0.5988
  • Accuracy: 0.9308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 56 0.3586 0.6358 0.5660 0.5989 0.9323
No log 2.0 112 0.3618 0.6069 0.5746 0.5903 0.9297
No log 3.0 168 0.3722 0.5956 0.6038 0.5997 0.9306
No log 4.0 224 0.3993 0.6060 0.5883 0.5970 0.9301
No log 5.0 280 0.4102 0.5411 0.6329 0.5834 0.9232
No log 6.0 336 0.4077 0.6097 0.5815 0.5953 0.9319
No log 7.0 392 0.4096 0.5858 0.6089 0.5971 0.9286
No log 8.0 448 0.4169 0.5975 0.5832 0.5903 0.9297
0.0111 9.0 504 0.4208 0.6064 0.5866 0.5963 0.9309
0.0111 10.0 560 0.4211 0.6078 0.5901 0.5988 0.9308

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.0
  • Tokenizers 0.15.2
Downloads last month
27
Safetensors
Model size
65.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for chenxu0602/ner_twitter_fine_tune

Finetuned
(225)
this model